首页> 外文期刊>IEEE Transactions on Antennas and Propagation >Three-Dimensional Time-Domain Finite-Element Simulation of Dielectric Breakdown Based on Nonlinear Conductivity Model
【24h】

Three-Dimensional Time-Domain Finite-Element Simulation of Dielectric Breakdown Based on Nonlinear Conductivity Model

机译:基于非线性电导率模型的介质击穿三维时域有限元模拟

获取原文
获取原文并翻译 | 示例

摘要

Dielectric breakdown during high-power operation is hazardous to electric and electronic devices and systems. During the breakdown process, the bound charges break free and are pushed to move by the force of high-intensity fields. As a result, a reduction in the resistance of an insulator can be observed, and a portion of the insulator becomes electrically conductive. Such a process can be described as the change of conductivity of the dielectric, which in this case, is a nonlinear function of the electric field. In this paper, the nonlinear conductivity is incorporated into Maxwell’s equations, and the resulting nonlinear equation is solved using the time-domain finite-element method together with Newton’s method (NM). The Jacobian matrix required in the NM is analytically derived to obtain a numerical solution with good accuracy and efficiency. A fixed-point method is also presented to provide numerical solutions as a validation for the NM. Several numerical examples are presented to demonstrate the capability of the proposed algorithm and the nonlinear effect caused by the nonlinear conductivity.
机译:大功率运行期间的电介质击穿对电气和电子设备及系统有害。在击穿过程中,束缚电荷释放并在高强度场的作用下被推动移动。结果,可以观察到绝缘体的电阻减小,并且绝缘体的一部分变为导电的。可以将这种过程描述为电介质电导率的变化,在这种情况下,电导率的变化是电场的非线性函数。在本文中,将非线性电导率合并到Maxwell方程中,并使用时域有限元方法和Newton方法(NM)求解所得的非线性方程。通过分析得出NM中所需的雅可比矩阵,以获得具有良好准确性和效率的数值解。还提出了定点方法来提供数值解作为对NM的验证。给出了几个数值算例,以证明所提算法的能力以及非线性电导率所引起的非线性效应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号