首页> 外文期刊>Annals of Mathematics and Artificial Intelligence >Decision procedures for extensions of the theory of arrays
【24h】

Decision procedures for extensions of the theory of arrays

机译:扩展阵列理论的决策程序

获取原文
获取原文并翻译 | 示例

摘要

The theory of arrays, introduced by McCarthy in his seminal paper "Towards a mathematical science of computation," is central to Computer Science. Unfortunately, the theory alone is not sufficient for many important verification applications such as program analysis. Motivated by this observation, we study extensions of the theory of arrays whose satisfiability problem (i.e., checking the satisfiability of conjunctions of ground literals) is decidable. In particular, we consider extensions where the indexes of arrays have the algebraic structure of Presburger arithmetic and the theory of arrays is augmented with axioms characterizing additional symbols such as dimension, sortedness, or the domain of definition of arrays. We provide methods for integrating available decision procedures for the theory of arrays and Presburger arithmetic with automatic instantiation strategies which allow us to reduce the satisfiability problem for the extension of the theory of arrays to that of the theories decided by the available procedures. Our approach aims to reuse as much as possible existing techniques so as to ease the implementation of the proposed methods. To this end, we show how to use model-theoretic, rewriting-based theorem proving (i.e., superposition), and techniques developed in the Satisfiability Modulo Theories communities to implement the decision procedures for the various extensions.
机译:麦卡锡(McCarthy)在他的开创性论文“迈向计算的数学科学”中提出的数组理论对计算机科学至关重要。不幸的是,仅凭理论不足以解决许多重要的验证应用,例如程序分析。受此观察结果的启发,我们研究了阵列理论的扩展,其可满足性问题(即检查基本文字的并列的可满足性)是可以确定的。特别地,我们考虑扩展,其中数组的索引具有Presburger算术的代数结构,并且数组的理论增加了公理,这些公理表征了其他符号,例如维,排序或数组定义的域。我们提供了将数组理论和Presburger算术的可用决策程序与自动实例化策略集成在一起的方法,这些方法使我们能够将数组理论的可扩展性减少到由可用程序决定的理论的可满足性问题。我们的方法旨在重用尽可能多的现有技术,以简化所提出​​方法的实施。为此,我们展示了如何使用模型理论,基于重写的定理证明(即叠加)和在满意度模块理论社区开发的技术来实现各种扩展的决策程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号