首页> 外文期刊>Annals of Combinatorics >Cops and Robber Game with a Fast Robber on Expander Graphs and Random Graphs
【24h】

Cops and Robber Game with a Fast Robber on Expander Graphs and Random Graphs

机译:扩展图和随机图上具有强盗的警察和强盗游戏

获取原文
获取原文并翻译 | 示例

摘要

We consider a variant of the Cops and Robber game, in which the robber has unbounded speed, i.e., can take any path from her vertex in her turn, but she is not allowed to pass through a vertex occupied by a cop. Let ${c_{infty}(G)}$ denote the number of cops needed to capture the robber in a graph G in this variant. We characterize graphs G with c ∞(G) = 1, and give an ${O( mid V(G)mid^2)}$ algorithm for their detection. We prove a lower bound for c ∞ of expander graphs, and use it to prove three things. The first is that if ${np geq 4.2 {rm log}n}$ then the random graph ${G= mathcal{G}(n, p)}$ asymptotically almost surely has ${eta_{1}/p leq eta_{2}{rm log}(np)/p}$ , for suitable positive constants ${eta_{1}}$ and ${eta_{2}}$ . The second is that a fixed-degree random regular graph G with n vertices asymptotically almost surely has ${c_{infty}(G) = Theta(n)}$ . The third is that if G is a Cartesian product of m paths, then ${n/4km^2 leq c_{infty}(G) leq n/k}$ , where ${n = mid V(G)mid}$ and k is the number of vertices of the longest path.
机译:我们考虑了警察与强盗游戏的一种变体,其中强盗具有无限的速度,即可以轮流从她的顶点移动任何路径,但不允许她穿过由警察占据的顶点。令$ {c_ {infty}(G)} $表示此变体中捕获图G中强盗所需的警察数量。我们用c∞(G)= 1来表征图G,并给出了检测它们的$ {O(mid V(G)mid ^ 2)} $算法。我们证明了展开图的c∞的下界,并用它来证明三件事。首先是,如果$ {np geq 4.2 {rm log} n} $,则随机图$ {G = mathcal {G}(n,p)} $渐近几乎肯定具有$ {eta_ {1} / p leq eta_ {2} {rm log}(np)/ p} $,以获得适当的正常数$ {eta_ {1}} $和$ {eta_ {2}} $。第二个是具有n个顶点的固定度随机正则图G几乎肯定地具有$ {c_ {infty}(G)= Theta(n)} $。第三是如果G是m个路径的笛卡尔积,则$ {n / 4km ^ 2 leq c_ {infty}(G)leq n / k} $,其中$ {n = mid V(G)mid} $ k是最长路径的顶点数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号