首页> 外文期刊>Annals of Biomedical Engineering >High Efficient System for Automatic Classification of the Electrocardiogram Beats
【24h】

High Efficient System for Automatic Classification of the Electrocardiogram Beats

机译:高效的心电图搏动自动分类系统

获取原文
获取原文并翻译 | 示例

摘要

Automatic classification of the electrocardiogram (ECG) signals is an important subject for clinical diagnosis of heart disease. This study investigates the design of a high-efficient system to classify five types of ECG beat namely normal beats and four manifestations of heart arrhythmia, in twofold. First, we propose a system that includes two main modules: a feature extraction module and a classification module. Feature extraction module extracts a suitable combination of the ECG’s morphological characteristics and timing interval features. Discrete wavelet transform is used to extract the morphological features. In the classification module, a multi-class support vector machine (SVM)-based classifier is employed. The parameters of this system are determined based on a trial and error method and its performance is evaluated for the MIT-BIH arrhythmia database. Extensive experiments on the parameters of this system such as classifier kernels and various types of features are conducted. These experiments show that in SVM training, the kernels, kernel parameters, and feature selection have very important roles for SVM classification accuracy. Therefore, most appropriates of these parameters should be used for SVM training. Then at the second fold, a novel hybrid intelligent system (HIS) is proposed that consists of three main modules. In the HIS, further to the two mentioned modules, an optimization module is added. In this module, a genetic algorithm is used for optimization of the relevant parameters of system. These parameters are: wavelet filter type for feature extraction, wavelet decomposition level, and classifier’s parameters. Experimental results show that optimization improves the recognition system, efficiently, and HIS is more superior to the system, which as constant parameters.
机译:心电图(ECG)信号的自动分类是心脏病临床诊断的重要主题。这项研究调查了一种高效系统的设计,该系统将ECG搏动的五种类型(即正常搏动和心律不齐的四种表现)分为两类。首先,我们提出一个系统,该系统包括两个主要模块:特征提取模块和分类模块。特征提取模块提取ECG的形态特征和时间间隔特征的适当组合。离散小波变换用于提取形态特征。在分类模块中,采用了基于多分类支持向量机(SVM)的分类器。该系统的参数是基于反复试验方法确定的,并针对MIT-BIH心律失常数据库评估了其性能。对该系统的参数进行了广泛的实验,例如分类器内核和各种类型的特征。这些实验表明,在SVM训练中,内核,内核参数和特征选择对于SVM分类准确性具有非常重要的作用。因此,这些参数中最合适的应该用于SVM训练。然后在第二个方面,提出了一种由三个主要模块组成的新型混合智能系统(HIS)。在HIS中,除了上述两个模块之外,还添加了一个优化模块。在该模块中,遗传算法用于优化系统的相关参数。这些参数是:用于特征提取的小波滤波器类型,小波分解级别和分类器的参数。实验结果表明,优化算法有效地改善了识别系统,而HIS作为常数参数优于系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号