首页> 外文期刊>Algorithmica >Finding Maximum Induced Matchings in Subclasses of Claw-Free and P_5-Free Graphs, and in Graphs with Matching and Induced Matching of Equal Maximum Size
【24h】

Finding Maximum Induced Matchings in Subclasses of Claw-Free and P_5-Free Graphs, and in Graphs with Matching and Induced Matching of Equal Maximum Size

机译:在无爪图和无P_5图的子类中以及在具有相等且最大大小相等的匹配和归纳匹配的图中查找最大诱导匹配

获取原文
获取原文并翻译 | 示例

摘要

In a graph G a matching is a set of edges in which no two edges have a common endpoint. An induced matching is a matching in which no two edges are linked by an edge of G. The maximum induced matching (abbreviated MIM) problem is to find the maximum size of an induced matching for a given graph G. This problem is known to be NP-hard even on bipartite graphs or on planar graphs. We present a polynomial time algorithm which given a graph G either finds a maximum induced matching in G, or claims that the size of a maximum induced matching in G is strictly less than the size of a maximum matching in G. We show that the MIM problem is NP-hard on line-graphs, claw-free graphs, chair-free graphs, Hamiltonian graphs and r-regular graphs for r ≥ 5. On the other hand, we present polynomial time algorithms for the MIM problem on (P_5, D_m)-free graphs, on (bull, chair)-free graphs and on line-graphs of Hamiltonian graphs.
机译:在图G中,匹配是一组边,其中没有两个边具有公共端点。诱导匹配是其中两个边缘都不由G的边缘链接的匹配。最大诱导匹配(缩写为MIM)问题是找到给定图G的诱导匹配的最大大小。已知此问题是即使在二部图或平面图上也具有NP硬度。我们给出了多项式时间算法,该算法给出了图G,或者在G中找到了最大诱导匹配,或者声称G中最大诱导匹配的大小严格小于G中最大匹配的大小。我们证明了MIM问题是r≥5的线图,无爪图,无椅子图,哈密顿图和r-正则图上的NP-困难。另一方面,我们针对(P_5,无D_m)图,无(牛,椅子)图和汉密尔顿图的线图。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号