首页> 外文期刊>Algorithmica >Partial Lifting and the Elliptic Curve Discrete Logarithm Problem
【24h】

Partial Lifting and the Elliptic Curve Discrete Logarithm Problem

机译:局部提升和椭圆曲线离散对数问题

获取原文
获取原文并翻译 | 示例

摘要

It has been suggested that a major obstacle in finding an index calculus attack on the elliptic curve discrete logarithm problem lies in the difficulty of lifting points from elliptic curves over finite fields to global fields. We explore the possibility of circumventing the problem of explicitly lifting points by investigating whether partial information about the lifting would be sufficient for solving the elliptic curve discrete logarithm problem. Along this line, we show that the elliptic curve discrete logarithm problem can be reduced to three partial lifting problems. Our reductions run in random polynomial time assuming certain conjectures, which are based on some well-known and widely accepted conjectures concerning the expected ranks of elliptic curves over the rationals. Should the elliptic curve discrete logarithm problem admit no subexponential time attack, then our results suggest that gaining partial information about lifting would be at least as hard.
机译:已经提出,在寻找对椭圆曲线离散对数问题的指数演算攻击的主要障碍在于难以将点从有限域上的椭圆曲线提升到整体场。通过研究有关提升的部分信息是否足以解决椭圆曲线离散对数问题,我们探索了规避显式提升点问题的可能性。沿着这条线,我们表明椭圆曲线离散对数问题可以简化为三个局部提升问题。我们的减少是在假设某些猜想的情况下,以随机多项式时间进行的,这些猜想是基于一些众所周知的并且被广泛接受的关于有理椭圆曲线的预期等级的猜想。如果椭圆曲线离散对数问题不接受次指数时间攻击,那么我们的结果表明,获得有关提升的部分信息将至少同样困难。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号