首页> 外文期刊>Algorithmica >Oblivious and Adaptive Strategies for the Majority and Plurality Problems
【24h】

Oblivious and Adaptive Strategies for the Majority and Plurality Problems

机译:多数和多数问题的遗忘和自适应策略

获取原文
获取原文并翻译 | 示例

摘要

In the well-studied Majority problem, we are given a set of n balls colored with two or more colors, and the goal is to use the minimum number of color comparisons to find a ball of the majority color (i.e., a color that occurs for more than n/2 times). The Plurality problem has exactly the same setting while the goal is to find a ball of the dominant color (i.e., a color that occurs most often). Previous literature regarding this topic dealt mainly with adaptive strategies, whereas in this paper we focus more on the oblivious (i.e., non-adaptive) strategies. Given that our strategies are oblivious, we establish a linear upper bound for the Majority problem with arbitrarily many different colors assuming a majority label exists. We then show that the Plurality problem is significantly more difficult by establishing quadratic lower and upper bounds. In the end we also discuss some generalized upper bounds for adaptive strategies in the k-color Plurality problem.
机译:在经过充分研究的多数问题中,我们给了一组n个球,它们用两种或更多种颜色上色,并且目标是使用最少数量的颜色比较来找到多数颜色的球(即出现的颜色超过n / 2次)。复数问题的设置完全相同,而目标是找到占主导地位的颜色(即最常出现的颜色)的球。先前有关该主题的文献主要涉及自适应策略,而在本文中,我们更多地关注遗忘(即非自适应)策略。考虑到我们的策略是不言而喻的,我们假设多数标签存在,使用任意多种不同的颜色为多数问题建立线性上限。然后,我们表明通过建立二次方的上下限,很难解决多个问题。最后,我们还讨论了k色多元问题中自适应策略的一些广义上界。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号