首页> 外文期刊>Algorithmica >Exact Minkowksi Sums of Polyhedra and Exact and Efficient Decomposition of Polyhedra into Convex Pieces
【24h】

Exact Minkowksi Sums of Polyhedra and Exact and Efficient Decomposition of Polyhedra into Convex Pieces

机译:多面体的精确Minkowksi加和与多面体的精确有效分解为凸块

获取原文
获取原文并翻译 | 示例

摘要

We present the first exact and robust implementation of the 3D Minkowski sum of two non-convex poiyhedra. Our implementation decomposes the two polyhedra into convex pieces, performs pairwise Minkowski sums on the convex pieces, and constructs their union. We achieve exactness and the handling of all degeneracies by building upon 3D Nef polyhedra as provided by Cgal. The implementation also supports open and closed polyhedra. This allows the handling of degenerate scenarios like the tight passage problem in robot motion planning.rnThe bottleneck of our approach is the union step. We address efficiency by optimizing this step by two means: we implement an efficient decomposition that yields a small number of convex pieces, and develop, test and optimize multiple strategies for uniting the partial sums by consecutive binary union operations.rnThe decomposition that we implemented as part of the Minkowski sum is interesting in its own right. It is the first robust implementation of a decomposition of polyhedra into convex pieces that yields at most O(r~2) pieces, where r is the number of edges whose adjacent facets comprise an angle of more than 180 degrees with respect to the interior of the polyhedron.
机译:我们介绍了两个非凸poiyhedra的3D Minkowski和的第一个精确而可靠的实现。我们的实现将两个多面体分解为凸块,对凸块执行成对的Minkowski和,并构造它们的并集。通过基于Cgal提供的3D Nef多面体,我们可以实现精确性和对所有简并性的处理。该实现还支持开放式和封闭式多面体。这样可以处理退化的场景,例如机器人运动计划中的紧通道问题。rn我们方法的瓶颈是联合步骤。我们通过以下两种方法来优化此步骤来解决效率问题:我们实现了产生少量凸块的高效分解,并开发,测试和优化了通过连续二进制并集运算将部分和组合在一起的多种策略。 Minkowski和的一部分本身很有趣。这是将多面体分解成凸块的第一个稳健实现,最多可产生O(r〜2)个块,其中r是其相邻小平面相对于内部的角度大于180度的边的数量。多面体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号