首页> 外文期刊>Algorithmica >Continuous Monitoring of Distributed Data Streams over a Time-Based Sliding Window
【24h】

Continuous Monitoring of Distributed Data Streams over a Time-Based Sliding Window

机译:在基于时间的滑动窗口上连续监视分布式数据流

获取原文
获取原文并翻译 | 示例

摘要

In this paper we extend the study of algorithms for monitoring distributed data streams from whole data streams to a time-based sliding window. The concern is how to minimize the communication between individual streams and the root, while allowing the root, at any time, to report the global statistics of all streams within a given error bound. This paper presents communication-efficient algorithms for three classical statistics, namely, basic counting, frequent items and quantiles. The worst-case communication cost over a window is O(k/ε log εN/k) bits for basic counting, O(κ/ε log N/k) words for frequent items and O(k/ε2 log N/k) words for quantiles, where k is the number of distributed data streams, N is the total number of items in the streams that arrive or expire in the window, and e < 1 is the given error bound. The performance of our algorithms matches and nearly matches the corresponding lower bounds. We also show how to generalize these results to streams with out-of-order data.
机译:在本文中,我们将用于监视分布式数据流的算法的研究从整个数据流扩展到基于时间的滑动窗口。关注的是如何最小化单个流与根之间的通信,同时允许根在任何时候报告给定错误范围内所有流的全局统计信息。本文提出了三种经典统计数据的有效通信算法,即基本计数,频繁项和分位数。窗口上最坏情况的通信成本是用于基本计数的O(k /εlogεN/ k)个位,用于频繁项的O(κ/εlog N / k)个字和O(k /ε2log N / k)分位数的单词,其中k是分布式数据流的数量,N是流在窗口中到达或到期的流中项目的总数,e <1是给定的误差范围。我们算法的性能与相应下限相匹配并且几乎相匹配。我们还将展示如何将这些结果归纳为具有乱序数据的流。

著录项

  • 来源
    《Algorithmica》 |2012年第4期|p.1088-1111|共24页
  • 作者单位

    Department of Computer Science, University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong;

    Department of Computer Science, University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong;

    Max-Planck-Institut fuer Informatik, 66123 Saarbruecken, Germany;

    Department of Computer Science, University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Algorithms; Distributed data streams; Communication; Frequent items; Quantiles;

    机译:算法;分布式数据流;通讯;经常性物品;分位数;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号