首页> 外文期刊>Algorithmica >A Uniform Paradigm to Succinctly Encode Various Families of Trees
【24h】

A Uniform Paradigm to Succinctly Encode Various Families of Trees

机译:统一编码各种树木的统一范式

获取原文
获取原文并翻译 | 示例

摘要

We propose a uniform method to encode various types of trees succinctly. These families include ordered (ordinal), k-ary (cardinal), and unordered (free) trees. We will show the approach is intrinsically suitable for obtaining entropy-based encodings of trees (such as the degree-distribution entropy). Previously-existing succinct encodings of trees use ad hoc techniques to encode each particular family of trees. Additionally, the succinct encodings obtained using the uniform approach improve upon the existing succinct encodings of each family of trees; in the case of ordered trees, it simplifies the encoding while supporting the full set of navigational operations. It also simplifies the implementation of many supported operations. The approach applied to k-ary trees yields a succinct encoding that supports both cardinal-type operations (e.g. determining the child label i) as well as the full set of ordinal-type operations (e.g. reporting the number of siblings to the left of a node). Previous work on succinct encodings of k-ary trees does not support both types of operations simultaneously (Benoit et al. in Algorithmica 43(4):275-292, 2005; Raman et al. in ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 233-242, 2002). For unordered trees, the approach achieves the first succinct encoding. The approach is based on two recursive decompositions of trees into subtrees. Recursive decomposition of a structure into substructures is a common technique in succinct encodings and has even been used to encode (ordered) trees (Geary et al. in ACM Trans. Algorithms 2(4):510-534,2006; He et al. in ICALP, pp. 509-520, 2007) and dynamic binary trees (Munro et al. in ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 529-536,2001; Storm in Representing dynamic binary trees succinctly, Master's thesis, 2000). The main distinction of the approach in this paper is that a tree is decomposed into subtrees in a manner that the subtrees are maximally isolated from each other. This intermediate decomposition result is interesting in its own right and has proved useful in other applications (Farzan et al. in ICALP (1), pp. 451-162,2009; Farzan and Munro in ICALP (1), pp. 439-450, 2009; Farzan and Kamali in ICALP, 2011).
机译:我们提出了一种统一的方法来简洁地编码各种类型的树木。这些家族包括有序(普通),kary(基数)和无序(免费)树。我们将展示该方法本质上适用于获取基于熵的树的编码(例如度分布熵)。先前存在的简洁的树编码使用临时技术来编码每个特定的树家族。另外,使用统一方法获得的简洁编码改进了每个树族的现有简洁编码。对于有序树,它在支持整套导航操作的同时简化了编码。它还简化了许多支持的操作的实现。应用于k进制树的方法会产生简洁的编码,该编码既支持基数类型的操作(例如,确定子标签i),也支持完整的序数类型的操作(例如,报告a左侧的同级数)。节点)。以前关于k元树的简洁编码的工作无法同时支持两种类型的运算(Benoit等人,Algorithmica 43(4):275-292,2005; Raman等人,ACM-SIAM离散算法研讨会(SODA) ),第233-242页,2002)。对于无序树,该方法实现了第一个简洁编码。该方法基于将树递归分解为子树的两个过程。将结构递归分解为子结构是精简编码中的常用技术,甚至已被用于编码(有序)树(Geary等人,ACM Trans。Algorithms 2(4):510-534,2006; He等人。在ICALP中,第509-520页,2007年)和动态二叉树(Munro等人在ACM-SIAM离散算法研讨会(SODA)中,第529-536页,2001年; Storm简洁地表示了动态二叉树,硕士论文) ,2000)。本文中该方法的主要区别在于,将树分解为子树的方式是使子树彼此最大程度地隔离。这种中间分解结果本身很有趣,并已证明在其他应用中有用(Farzan等人在ICALP(1),第451-162页,2009; Farzan和Munro在ICALP(1),第439-450页) ,2009; Farzan和Kamali在ICALP中的研究,2011)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号