首页> 外文期刊>Algorithmica >Time Complexity Analysis of Evolutionary Algorithms on Random Satisfiable k-CNF Formulas
【24h】

Time Complexity Analysis of Evolutionary Algorithms on Random Satisfiable k-CNF Formulas

机译:随机可满足的k-CNF公式的演化算法的时间复杂度分析

获取原文
获取原文并翻译 | 示例

摘要

We contribute to the theoretical understanding of randomized search heuristics by investigating their optimization behavior on satisfiable random k-satisfiability instances both in the planted solution model and the uniform model conditional on satisfiability. Denoting the number of variables by n, our main technical result is that the simple () evolutionary algorithm with high probability finds a satisfying assignment in time when the clause-variable density is at least logarithmic. For low density instances, evolutionary algorithms seem to be less effective, and all we can show is a subexponential upper bound on the runtime for densities below . We complement these mathematical results with numerical experiments on a broader density spectrum. They indicate that, indeed, the () EA is less efficient on lower densities. Our experiments also suggest that the implicit constants hidden in our main runtime guarantee are low. Our main result extends and considerably improves the result obtained by Sutton and Neumann (Lect Notes Comput Sci 8672:942-951, 2014) in terms of runtime, minimum density, and clause length. These improvements are made possible by establishing a close fitness-distance correlation in certain parts of the search space. This approach might be of independent interest and could be useful for other average-case analyses of randomized search heuristics. While the notion of a fitness-distance correlation has been around for a long time, to the best of our knowledge, this is the first time that fitness-distance correlation is explicitly used to rigorously prove a performance statement for an evolutionary algorithm.
机译:通过研究在种植解模型和以满足条件为条件的统一模型中的可满足的随机k可满足性实例上的优化行为,我们为理论上对随机搜索启发式的理解做出了贡献。用n表示变量的数量,我们的主要技术结果是,当子句可变密度至少为对数时,具有高概率的简单()进化算法会及时找到令人满意的分配。对于低密度实例,进化算法似乎不太有效,并且我们可以显示的是以下密度下运行时的次指数上限。我们通过在更宽的密度谱上进行数值实验来补充这些数学结果。他们表明,实际上,()EA在较低的密度下效率较低。我们的实验还表明,隐藏在主运行时保证中的隐式常量很低。我们的主要结果在运行时间,最小密度和子句长度方面扩展并大大改善了Sutton和Neumann所获得的结果(Lect Notes Comput Sci 8672:942-951,2014)。通过在搜索空间的某些部分建立紧密的适应距离相关性,可以使这些改进成为可能。这种方法可能具有独立意义,并且可能对随机搜索启发式方法的其他平均情况分析有用。尽管适应距离相关性的概念已经存在了很长时间,但据我们所知,这是首次将适应性距离相关性明确用于严格证明进化算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号