首页> 外文期刊>Algorithmica >A Constant Factor Approximation Algorithm for the Storage Allocation Problem
【24h】

A Constant Factor Approximation Algorithm for the Storage Allocation Problem

机译:求解存储分配问题的常数因子近似算法

获取原文
获取原文并翻译 | 示例

摘要

We study the storage allocation problem (SAP) which is a variant of the unsplittable flow problem on paths (UFPP). A SAP instance consists of a path and a set J of tasks. Each edge has a capacity and each task is associated with a path in P, a demand and a weight . The goal is to find a maximum weight subset of tasks and a height function such that (i) , for every ; and (ii) if such that and , then . SAP can be seen as a rectangle packing problem in which rectangles can be moved vertically, but not horizontally. We present a polynomial time -approximation algorithm for SAP. Our algorithm is based on a variation of the framework for approximating UFPP by Bonsma et al. [FOCS 2011] and on a -approximation algorithm for -small SAP instances (in which , for every , for a sufficiently small constant ). In our algorithm for -small instances, tasks are packed carefully in strips in a UFPP manner, and then a factor is incurred by a reduction from SAP to UFPP in strips. The strips are stacked to form a SAP solution. Finally, we provide a -approximation algorithm for SAP on ring networks.
机译:我们研究存储分配问题(SAP),它是路径上不可拆分流问题(UFPP)的变体。一个SAP实例由一个路径和一组任务J组成。每个边具有容量,每个任务与P中的路径,需求和权重相关联。目标是找到任务的最大权重子集和一个高度函数,使得(i)每一个;和(ii)如果是,则。 SAP可以看作是矩形填充问题,其中矩形可以垂直移动,而不能水平移动。我们提出了用于SAP的多项式时间逼近算法。我们的算法基于Bonsma等人的近似UFPP框架的变化。 [FOCS 2011]以及针对-small SAP实例的-approximation算法(其中,对于每个实例,对于足够小的常数)。在我们的小型实例算法中,任务以UFPP方式小心地打包在条带中,然后从SAP减少到UFPP导致条带化是一个因素。将条带堆叠以形成SAP解决方案。最后,我们为环形网络上的SAP提供了一种-近似算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号