首页> 外文会议>Proceedings of the 25th ACM symposium on parallelism in algorithms and architectures >A Constant Factor Approximation Algorithm for the Storage Allocation Problem
【24h】

A Constant Factor Approximation Algorithm for the Storage Allocation Problem

机译:求解存储分配问题的常数因子近似算法

获取原文
获取原文并翻译 | 示例

摘要

We study the Storage Allocation Problem (SAP) which is a variant of the Unsplittable Flow Problem on Paths (UFPP). A SAP instance consists of a path P = (V, E) and a set J of tasks. Each edge e ∈ E has a capacity c_e and each task j ∈ J is associated with a path I_j in P, a demand d_j and a weight w_j. The goal is to find a maximum weight subset S is containd in J of tasks and a height function h : S → R~+ such that (ⅰ) h(j)+d_j ≤ c_e. for every e ∈ I_j; and (ⅱ) if j, i ∈ S such that I_j ∩ I_i ≠ 0 and h(j) ≥ h(i), then h(j) ≥ h(i) + d_i. SAP can be seen as a rectangle packing problem in which rectangles can be moved vertically, but not horizontally. We present a polynomial time (9 + ε)-approximation algorithm for SAP. Our algorithm is based on a variation of the framework for approximating UFPP by Bonsma et al. [FOGS 2011] and on a (4 + ε)-approximation algorithm for δ-small SAP instances (in which d_j ≤ δ · c_e, for every e ∈ I_j, for a sufficiently small constant δ > 0). In our algorithm for δ-small instances, tasks are packed carefully in strips in a UFPP manner, and then a (1 + ε) factor is incurred by a reduction from SAP to UFPP in strips. The strips are stacked to form a SAP solution. Finally, we show-that SAP is strongly NP-hard, even with uniform weights and even if assuming the no bottleneck assumption.
机译:我们研究了存储分配问题(SAP),它是路径上不可拆分流问题(UFPP)的变体。一个SAP实例由路径P =(V,E)和一组任务J组成。每个边缘e∈E具有容量c_e,每个任务j∈J与P中的路径I_j,需求d_j和权重w_j关联。目的是找到任务J和高度函数h中包含的最大权重子集S:S→R〜+,使得(ⅰ)h(j)+ d_j≤c_e。对于每个e∈I_j; (ⅱ)如果j,i∈S使得I_j∩I_i≠0且h(j)≥h(i),则h(j)≥h(i)+ d_i。 SAP可以看作是矩形填充问题,其中矩形可以垂直移动,而不能水平移动。我们提出了用于SAP的多项式时间(9 +ε)逼近算法。我们的算法基于Bonsma等人的近似UFPP框架的变化。 [FOGS 2011]以及针对δ小SAP实例(其中d_j≤δ·c_e,对于每个e∈I_j,对于足够小的常数δ> 0)的(4 +ε)近似算法。在我们针对δ小实例的算法中,任务以UFPP方式小心地打包在条带中,然后从SAP减少到UFPP导致条带产生(1 +ε)因子。将条带堆叠以形成SAP解决方案。最后,我们证明了SAP即使在权重相同且假设没有瓶颈的情况下也具有很强的NP能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号