首页> 外文期刊>Algorithmica >An O(log OPT)-Approximation for Covering and Packing Minor Models of θ_r
【24h】

An O(log OPT)-Approximation for Covering and Packing Minor Models of θ_r

机译:覆盖和压缩θ_r次要模型的O(log OPT)逼近

获取原文
获取原文并翻译 | 示例

摘要

AbstractGiven two graphsGandH, we define$$mathsf{v}hbox {-}mathsf{cover}_{H}(G)$$v-coverH(G)(resp.$$mathsf{e}hbox {-}mathsf{cover}_{H}(G)$$e-coverH(G)) as the minimum number of vertices (resp. edges) whose removal fromGproduces a graph without any minor isomorphic toH. Also$$mathsf{v}hbox {-}mathsf{pack}_{H}(G)$$v-packH(G)(resp.$$mathsf{e}hbox {-}mathsf{pack}_{H}(G)$$e-packH(G)) is the maximum number of vertex- (resp. edge-) disjoint subgraphs ofGthat contain a minor isomorphic toH. We denote by$$theta _{r}$$θrthe graph with two vertices andrparallel edges between them. When$$H=theta _{r}$$H=θr, the parameters$$mathsf{v}hbox {-}mathsf{cover}_{H}$$v-coverH,$$mathsf{e}hbox {-}mathsf{cover}_{H}$$e-coverH,$$mathsf{v}hbox {-}mathsf{pack}_{H}$$v-packH, and$$mathsf{e}hbox {-}mathsf{pack}_{H}$$e-packHareNP-hard to compute (for sufficiently big values of r). Drawing upon combinatorial results in Chatzidimitriou et al. (Minors in graphs of large$$theta _r$$θr-girth, 2015,arXiv:1510.03041), we give an algorithmic proof that if$$mathsf{v}hbox {-}mathsf{pack}_{{theta _{r}}}(G)le k$$v-packθr(G)k, then$$mathsf{v}hbox {-}mathsf{cover}_{theta _{r}}(G) = O(klog k)$$v-coverθr(G)=O(klogk), and similarly for$$mathsf{e}hbox {-}mathsf{pack}_{theta _{r}}$$e-packθrand $$mathsf{e}hbox {-}mathsf{cover}_{theta _{r}}$$e-coverθr. In other words, the class of graphs containing$${theta _{r}}$$θras a minor has the vertex/edge Erdős–Pósa property, for every positive integerr. Using the algorithmic machinery of our proofs we introduce a unified approach for the design of an$$O(log mathrm{OPT})$$O(logOPT)-approximation algorithm for $$mathsf{v}hbox {-}mathsf{pack}_{{theta _{r}}}$$v-packθr,$$mathsf{v}hbox {-}mathsf{cover}_{{theta _{r}}}$$v-coverθr,$$mathsf{e}hbox {-}mathsf{pack}_{{theta _{r}}}$$e-packθr, and$$mathsf{e}hbox {-}mathsf{cover}_{{theta _{r}}}$$e-coverθrthat runs in$$O(ncdot log (n)cdot m)$$O(n·log(n)·m)steps. Also, we derive several new Erdős–Pósa-type results from the techniques that we introduce.
机译: Abstract 给出两个图表 G H ,我们定义了 $$ mathsf {v} hbox {-} mathsf {cover} _ {H}(G)$$ <数学xmlns:xlink =“ http://www.w3.org/1999/xlink”> v - 封面 H G (分别为 $$ mathsf {e} hbox {-} mathsf {cover} _ {H}(G)$$ e - cover H G )作为最小顶点数(分别为从 G 中移除的边生成了一个与 H 没有任何次同构的图。 $$ mathsf {v} hbox {-} mathsf {pack} _ {H}(G)$$ v - pack H G (分别为 $$ mathsf {e} hbox {-} mathsf {pack} _ {H} (G)$$ <数学xmlns:xlink =“ http://www.w3.org/1999/xlink”> e - 包装 H (< / mo> G )是最大数量顶点-(resp。 edge-) G 的不相交子图,其中包含与 H 的次要同构。我们用 < EquationSource Format =“ TEX”> $$ theta _ {r} $$ <数学xmlns:xlink =“ http://www.w3.org/1999/xlink”> θ r 具有两个顶点且 r 它们之间的平行边。当 $$ H = theta _ {r} $$ <数学xmlns:xlink =“ http://www.w3.org/1999/xlink”> H = θ r ,参数 $$ mathsf {v} hbox {-} mathsf {cover} _ {H} $$ <数学xmlns:xlink =” http://www.w3.org/1999/xlink“> v - 封面 H $$ mathsf {e} hbox {-} mathsf {cover} _ {H} $$ e - cover < / mi> H $$ mathsf {v} hbox {-} mathsf {pack} _ {H} $$ <数学xmlns:xlink =“ http://www.w3.org/1999/xlink”> v - 包装 H $$ mathsf {e} hbox {-} mathsf {pack} _ {H} $$ e - < mi mathvariant =“ sans-serif”>包装 H NP -难以计算(对于 r 足够大的值)。利用Chatzidimitriou等人的组合结果。 (大的 $$ theta _r $$ <数学xmlns:xlink =“ http://www.w3.org/1999/xlink”> θ r -周长,2015年, arXiv:1510.03041 ),我们给出了算法证明,如果 $ $ mathsf {v} hbox {-} mathsf {pack} _ {{theta _ {r}}}(G)le k $$ v - pack θ r G < / mi> k InlineEquation>,然后 $$ mathsf {v} hbox {-} mathsf {cover} _ {theta _ {r}}(G)= O(klog k)$$ <数学xmlns:xlink =” http://www.w3.org/1999/xlink“> v - 封面 θ r G = O k lo g k ,并且对于 $$ mathsf {e} hbox {-} mathsf {pack} _ {theta _ {r}} $$ e - 包装 θ r $$ mathsf {e} hbox {-} mathsf {cover} _ {theta _ {r}} $$ <数学xmlns:xlink =“ http://www.w3.org/1999/xlink”> e - 封面 θ r 。换句话说,包含 $$ {theta _ {r}} $$ <数学xmlns:xlink =“ http://www.w3 .org / 1999 / xlink“> θ r 对于每个正整数 r ,minor具有顶点/边缘Erdős–Pósa属性。使用我们的证明的算法机制,我们为 $$ O(log mathrm {OPT})$$ <数学xmlns:xlink =“ http://www.w3.org/1999/xlink”> O log < mi mathvariant =“ normal”> OPT - $ $ mathsf {v} hbox {-} mathsf {pack} _ {{theta _ {r}}} $$ <增长> v - pack θ r < ImageObject Color =“ BlackWhite” FileRef =“ 453_2017_313_Article_IEq23.gif” Format =“ GIF” Rendition =“ HTML” Type =“ Linedraw” /> $$ mathsf {v} hbox { -} mathsf {cover} _ {{theta _ {r}}} $$ v - 封面 < mi mathvariant =“ italic”>θ r $ $ mathsf {e} hbo x {-} mathsf {pack} _ {{theta _ {r}}} $$ e - pack θ r $$ mathsf {e} hbox {-} mathsf {cover} _ {{theta _ {r}}} $$ e - cover θ r $$ O(ncdot log(n)cdot m)$$ O n ·< / mo> log < / mo> n · m < / mi> 步骤。此外,我们从介绍的技术中得出了几种新的Erdős-Pósa型结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号