AbstractGiven two graphsGandH, we define$$mathsf{v}hbox {-}mathsf{cover}_{H}(G)$$(resp.$$mathsf{e}hbox {-}mathsf{cover}_{H}(G)$$) as the minimum number of vertices (resp. edges) whose removal fromGproduces a graph without any minor isomorphic toH. Also$$mathsf{v}hbox {-}mathsf{pack}_{H}(G)$$(resp.$$mathsf{e}hbox {-}mathsf{pack}_{H}(G)$$) is the maximum number of vertex- (resp. edge-) disjoint subgraphs ofGthat contain a minor isomorphic toH. We denote by$$theta _{r}$$the graph with two vertices andrparallel edges between them. When$$H=theta _{r}$$, the parameters$$mathsf{v}hbox {-}mathsf{cover}_{H}$$,$$mathsf{e}hbox {-}mathsf{cover}_{H}$$,$$mathsf{v}hbox {-}mathsf{pack}_{H}$$, and$$mathsf{e}hbox {-}mathsf{pack}_{H}$$areNP-hard to compute (for sufficiently big values of r). Drawing upon combinatorial results in Chatzidimitriou et al. (Minors in graphs of large$$theta _r$$-girth, 2015,arXiv:1510.03041), we give an algorithmic proof that if$$mathsf{v}hbox {-}mathsf{pack}_{{theta _{r}}}(G)le k$$, then$$mathsf{v}hbox {-}mathsf{cover}_{theta _{r}}(G) = O(klog k)$$, and similarly for$$mathsf{e}hbox {-}mathsf{pack}_{theta _{r}}$$and $$mathsf{e}hbox {-}mathsf{cover}_{theta _{r}}$$. In other words, the class of graphs containing$${theta _{r}}$$as a minor has the vertex/edge Erdős–Pósa property, for every positive integerr. Using the algorithmic machinery of our proofs we introduce a unified approach for the design of an$$O(log mathrm{OPT})$$-approximation algorithm for $$mathsf{v}hbox {-}mathsf{pack}_{{theta _{r}}}$$,$$mathsf{v}hbox {-}mathsf{cover}_{{theta _{r}}}$$,$$mathsf{e}hbox {-}mathsf{pack}_{{theta _{r}}}$$, and$$mathsf{e}hbox {-}mathsf{cover}_{{theta _{r}}}$$that runs in$$O(ncdot log (n)cdot m)$$steps. Also, we derive several new Erdős–Pósa-type results from the techniques that we introduce.展开▼