首页> 外文期刊>Algorithmica >Faster Approximate Diameter and Distance Oracles in Planar Graphs
【24h】

Faster Approximate Diameter and Distance Oracles in Planar Graphs

机译:平面图中的更快近似直径和距离畸胎

获取原文
获取原文并翻译 | 示例

摘要

We present an O (1/epsilon)5 -time algorithm that computes a (1+epsilon)-approximation of the diameter of a non-negatively-weighted, undirected planar graph of n vertices. This is an improvement over the algorithm of Weimann and Yuster (ACM Trans Algorithms 12(1):12, 2016) of O time in two regards. First we eliminate the exponential dependency on 1/epsilon by adapting and specializing Cabello's recent Voronoi-diagram-based technique (Cabello, in: Proceedings of the 28th ACM-SIAM Symposium on Discrete Algorithms (SODA), 2017) for approximation purposes. Second we shave off two logarithmic factors by choosing a better sequence of error parameters in the recursion. Moreover, using similar techniques we obtain a variant of Gu and Xu's (1+epsilon)-approximate distance oracle (Gu and Xu, in: Proceedings of the 26th International Symposium on Algorithms and Computation (ISAAC), 2015) with polynomial dependency on 1/epsilon in the preprocessing time and space and O query time.
机译:我们提出了一种O(1 / epsilon)5 -time算法,其计算(1 + epsilon) - 非负加权的直径的直径,n顶点的N个顶点的直径。这是对Weimann和Yuster算法(ACM Trans算法12(1):12,2016)的改进,在两次方面的时间。首先,我们通过适应和专业的基于Voronoi-Diagrams的技术(Cabello)来消除1 / epsilon的指数依赖性(Cabello:第28届ACM-Siam讨论会关于离散算法(SODA),2017)的近似目的。第二我们通过在递归中选择更好的错误参数序列来刮掉两个对数因子。此外,使用类似的技术,我们获得了古和徐(1 + epsilon)的变种 - 千克距离(古和徐,在:第26届国际算法和计算(ISAAC),2015年)关于1的综合课程/ epsilon在预处理时间和空间和o查询时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号