首页> 外文期刊>Algebras and Representation Theory >Pairs of Semisimple Lie Algebras and their Maximal Reductive Subalgebras
【24h】

Pairs of Semisimple Lie Algebras and their Maximal Reductive Subalgebras

机译:对半李李代数及其最大归约子代数

获取原文
获取原文并翻译 | 示例

摘要

Let $mathfrak g$ be a semisimple Lie algebra over a field $mathbb K$ , $text{char}left( mathbb{K} right)=0$ , and $mathfrak g_1$ a subalgebra reductive in $mathfrak g$ . Suppose that the restriction of the Killing form B of $mathfrak g$ to $mathfrak g_1 times mathfrak g_1$ is nondegenerate. Consider the following statements: ( 1) For any Cartan subalgebra $mathfrak h_1$ of $mathfrak g_1$ there is a unique Cartan subalgebra $mathfrak h$ of $mathfrak g$ containing $mathfrak h_1$ ; ( 2) $mathfrak g_1$ is self-normalizing in $mathfrak g$ ; ( 3) The B-orthogonal $mathfrak p$ of $mathfrak g_1$ in $mathfrak g$ is simple as a $mathfrak g_1$ -module for the adjoint representation. We give some answers to this natural question: For which pairs $(mathfrak g,mathfrak g_1)$ do ( 1), ( 2) or ( 3) hold? We also study how $mathfrak p$ in general decomposes as a $mathfrak g_1$ -module, and when $mathfrak g_1$ is a maximal subalgebra of $mathfrak g$ . In particular suppose $(mathfrak g,sigma )$ is a pair with $mathfrak g$ as above and σ its automorphism of order m. Assume that $mathbb K$ contains a primitive m-th root of unity. Define $mathfrak g_1:=mathfrak g^{sigma}$ , the fixed point algebra for σ. We prove the following generalization of a well known result for symmetric Lie algebras, i.e., for m=2: (a) $(mathfrak g,mathfrak g_1)$ satisfies ( 1); (b) For m prime, $(mathfrak g,mathfrak g_1)$ satisfies ( 2).
机译:假设$ mathfrak g $是域$ mathbb K $,$ text {char} left(mathbb {K} right)= 0 $和$ mathfrak g_1 $是$ mathfrak g $的归约子的半简单Lie代数。假设$ mathfrak g $的Killing B形式对$ mathfrak g_1乘mathfrak g_1 $的限制是不退化的。考虑以下语句:(1)对于$ mathfrak g_1 $的任何Cartan子代数$ mathfrak h_1 $,存在一个唯一的$ mathfrak g $的Cartan子代数$ mathfrak h $包含$ mathfrak h_1 $; (2)$ mathfrak g_1 $在$ mathfrak g $中是自规范化的; (3)$ mathfrak g $中的$ mathfrak g_1 $的B正交$ mathfrak p $很简单,它是伴随表示的$ mathfrak g_1 $模块。我们对这个自然问题给出一些答案:($),(2)或(3)对$(mathfrak g,mathfrak g_1)$持有哪些对?我们还研究了$ mathfrak p $一般如何分解为$ mathfrak g_1 $ -module,以及当$ mathfrak g_1 $是$ mathfrak g $的最大子代数时。特别地,假设$(mathfrak g,sigma)$是一个对,上面有$ mathfrak g $,σ是阶m的自同构。假设$ mathbb K $包含一个原始的第m个单位根。定义$ mathfrak g_1:= mathfrak g ^ {sigma} $,σ的不动点代数。对于对称李代数,即m = 2,我们证明了众所周知的结果的以下一般化:(a)$(mathfrak g,mathfrak g_1)$满足(1); (b)对于m个素数,$(mathfrak g,mathfrak g_1)$满足(2)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号