首页> 外文期刊>IIE Transactions >Modeling of a three-dimensional dynamic thermal field under grid-based sensor networks in grain storage
【24h】

Modeling of a three-dimensional dynamic thermal field under grid-based sensor networks in grain storage

机译:基于网格的传感器网络在谷物存储中的三维动态热场建模

获取原文
获取原文并翻译 | 示例

摘要

Thermal management is a major task in granaries, due to the essential role of temperature in grain storage. The accurate acquisition and updating of thermal field information generates a meaningful index for grain quality surveillance and storage maintenance actions. However, given the unknown mechanisms of local uncertainties, including local grain degradation and fungal infections that may significantly vary the thermal field in granaries, the appropriate modeling of field dynamics remains a challenging task. To address this issue, this article combines a three-dimensional (3D) nonlinear dynamics model with a stochastic spatiotemporal model to capture a 3D dynamic thermal map. To best harness the temperature data from the grid-based sensor network, we integrate the Kriging model into the Gaussian Markov random field model by introducing an anisotropic covariance function. Both simulation and real case studies are conducted to validate our proposed approach, and the results show that our approach outperforms other alternative methods for field estimation.
机译:由于温度在谷物存储中的重要作用,热管理是粮仓的一项主要任务。准确获取和更新热场信息可为谷物质量监控和存储维护行动提供有意义的指标。但是,鉴于局部不确定性的未知机制(包括局部谷物降解和真菌感染,可能会大大改变粮仓中的热场),对场动力学进行适当的建模仍然是一项艰巨的任务。为了解决此问题,本文将三维(3D)非线性动力学模型与随机时空模型结合起来以捕获3D动态热图。为了最好地利用来自基于网格的传感器网络的温度数据,我们通过引入各向异性协方差函数将Kriging模型集成到高斯马尔可夫随机场模型中。仿真和实际案例研究都进行了验证,以验证我们提出的方法,结果表明我们的方法优于其他替代方法进行现场估算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号