...
首页> 外文期刊>AIAA Journal >Computational Dynamics of Flapping Wings in Hover Flight: A Co-Simulation Strategy
【24h】

Computational Dynamics of Flapping Wings in Hover Flight: A Co-Simulation Strategy

机译:悬停飞行中扑翼的计算动力学:共同仿真策略

获取原文
获取原文并翻译 | 示例
           

摘要

A co-simulation strategy for modeling the unsteady dynamics of flying insects and small birds as well as biologically inspired flapping-wing micro-air-vehicles is developed in this work. In particular, the dynamic system under study is partitioned in two subsystems (the structural model and the aerodynamic model) that exchange information in a strong way. The vehicle or insect system is modeled as a collection of rigid bodies and lifting surfaces that can undergo deformations such as spanwise twisting, in-plane bending, out-of-plane bending, and an arbitrary combination of these deformation mechanisms. To account for the loads associated with the airflow, an aerodynamic model based on an extended version of the unsteady vortex-lattice method is used. The motion equations are integrated by using a fourth-order predictor-corrector method along with a procedure to stabilize the solution of the resulting differential-algebraic equations. The numerical results obtained for the unsteady lift and dynamics of a fruit fly in free hover flight are found to be in close agreement with prior experimental results reported in the literature. Furthermore, the inclusion of an adequate wing deformation pattern results in an increase of the lift force compared with that of a rigid wing surface, pointing to the importance of wing flexibility on aerodynamic performance. From the findings reported in this paper, it is believed that the numerical simulation framework presented here could serve as a computational tool for further studies of flying insects and micro-air-vehicles.
机译:在这项工作中,开发了一种用于模拟飞行昆虫和小鸟的非定常动力以及受生物启发的拍打翼微型飞机的联合仿真策略。尤其是,研究中的动态系统被划分为两个子系统(结构模型和空气动力学模型),这两个子系统以强有力的方式交换信息。车辆或昆虫系统被建模为一系列刚体和提升面,这些刚体和提升面可能会发生变形,例如,展向扭曲,平面内弯曲,平面外弯曲以及这些变形机制的任意组合。为了考虑与气流相关的负载,使用了基于非定常涡旋格方法的扩展版本的空气动力学模型。通过使用四阶预测器-校正器方法以及用于稳定所得微分-代数方程组解决方案的过程,可以对运动方程组进行积分。发现在自由悬停飞行中果蝇的不稳定升力和动力学的数值结果与文献中报道的先前实验结果非常吻合。此外,与刚性机翼表面相比,包含适当的机翼变形模式会导致升力增大,这表明机翼柔性对空气动力性能的重要性。根据本文报道的发现,可以认为,此处介绍的数值模拟框架可以用作进一步研究飞行昆虫和微型飞机的计算工具。

著录项

  • 来源
    《AIAA Journal》 |2017年第6期|1806-1822|共17页
  • 作者单位

    Univ Nacl Cordoba, RA-5000 Cordoba, Argentina|Natl Univ Rio Cuarto, Sch Exact Phys & Nat Sci, Struct Dept, RA-5800 Cordoba, Argentina|Natl Univ Rio Cuarto, Grp Appl Math, RA-5800 Cordoba, Argentina|Natl Sci & Tech Res Council IDIT CONICET, Inst Adv Studies Engn & Technol, RA-5000 Cordoba, Argentina;

    Univ Nacl Cordoba, RA-5000 Cordoba, Argentina|Natl Univ Rio Cuarto, Sch Exact Phys & Nat Sci, Struct Dept, RA-5800 Cordoba, Argentina|Natl Univ Rio Cuarto, Grp Appl Math, RA-5800 Cordoba, Argentina|Natl Sci & Tech Res Council IDIT CONICET, Inst Adv Studies Engn & Technol, RA-5000 Cordoba, Argentina;

    Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号