首页> 外文期刊>Affective Computing, IEEE Transactions on >Modeling the Temporal Evolution of Acoustic Parameters for Speech Emotion Recognition
【24h】

Modeling the Temporal Evolution of Acoustic Parameters for Speech Emotion Recognition

机译:建模用于语音情感识别的声学参数的时间演变

获取原文
获取原文并翻译 | 示例

摘要

During recent years, the field of emotional content analysis of speech signals has been gaining a lot of attention and several frameworks have been constructed by different researchers for recognition of human emotions in spoken utterances. This paper describes a series of exhaustive experiments which demonstrate the feasibility of recognizing human emotional states via integrating low level descriptors. Our aim is to investigate three different methodologies for integrating subsequent feature values. More specifically, we used the following methods: 1) short-term statistics, 2) spectral moments, and 3) autoregressive models. Additionally, we employed a newly introduced group of parameters which is based on the wavelet decomposition. These are compared with a baseline set comprised of descriptors which are usually used for the specific task. Subsequently, we experimented on fusing these sets on the feature and log-likelihood levels. The classification step is based on hidden Markov models, while several algorithms which can handle redundant information were used during fusion. We report results on the well-known and freely available database BERLIN using data of six emotional states. Our experiments show the importance of including information which is captured by the set based on multiresolution analysis and the efficacy of merging subsequent feature values.
机译:近年来,语音信号的情感内容分析领域已经引起了广泛的关注,并且不同的研究人员已经建立了几个框架来识别语音中的人类情感。本文介绍了一系列详尽的实验,这些实验证明了通过集成低级描述符来识别人类情绪状态的可行性。我们的目的是研究用于集成后续特征值的三种不同方法。更具体地说,我们使用以下方法:1)短期统计,2)谱矩和3)自回归模型。此外,我们采用了新引入的一组基于小波分解的参数。将它们与包含通常用于特定任务的描述符的基线集进行比较。随后,我们尝试在特征和对数似然级别上融合这些集合。分类步骤基于隐马尔可夫模型,而在融合过程中使用了几种可以处理冗余信息的算法。我们使用六种情绪状态的数据在著名的免费数据库BERLIN上报告结果。我们的实验表明,包括基于多分辨率分析的集合所捕获信息的重要性以及合并后续特征值的功效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号