首页> 外文期刊>Affective Computing, IEEE Transactions on >Inter-Brain EEG Feature Extraction and Analysis for Continuous Implicit Emotion Tagging During Video Watching
【24h】

Inter-Brain EEG Feature Extraction and Analysis for Continuous Implicit Emotion Tagging During Video Watching

机译:脑内EEG特征提取和分析在视频观看期间连续隐含的情绪标记

获取原文
获取原文并翻译 | 示例

摘要

How to efficiently tag the emotional experience of multimedia contents is an important and challenging problem in the field of affective computing. This paper presents an EEG-based real-time emotion tagging approach, by extracting inter-brain features from a group of participants when they watch the same emotional video clips. First, the continuous subjective reports on both the arousal and valence dimensions of emotion were obtained by employing a three-round behavioral rating paradigm. Second, the inter-brain features were systematically explored in both spectral and temporal domain. Finally, regression analyses were performed to evaluate the effectiveness of inter-brain amplitude and phase features. The inter-brain amplitude feature showed significantly better prediction performance than the inter-brain phase feature, as well as another two conventional features (spectral power and inter-subject correlation). By combining the four types of features, regression values (R-2) were obtained for the prediction of arousal (0.61 +/- 0.01) and valence (0.70 +/- 0.01), corresponding to prediction errors of 1.01 +/- 0.02 and 0.78 +/- 0.02 (unit on 9-point scales), respectively. The contributions of different electrodes and frequency bands were also analyzed. Our results show promising potentials of inter-brain EEG features in real-time emotion tagging applications.
机译:如何有效地标记多媒体内容的情绪体验是情感计算领域的一个重要和具有挑战性的问题。本文提出了一种基于EEG的实时情感标记方法,通过在观看同一情绪视频剪辑时从一组参与者中提取大脑中的大脑功能。首先,通过采用三轮行为评级范式来获得关于情绪的唤醒和价维的连续主观报告。其次,在光谱和时间域中系统地探索了脑内特征。最后,进行回归分析以评估脑内振幅和相位特征的有效性。脑内振幅特征显着比大脑间相位特征显着更好地进行预测性能,以及另外两个传统特征(光谱功率和对象间相关)。通过组合四种类型的特征,获得回归值(R-2),用于预测唤醒(0.61 +/- 0.01)和价(0.70 +/- 0.01),对应于1.01 +/- 0.02的预测误差和0.78 +/- 0.02(分别为9分尺寸)。还分析了不同电极和频带的贡献。我们的结果表明,大脑中EEG在实时情感标记应用中的脑电站特征的有希望的潜力。

著录项

  • 来源
    《Affective Computing, IEEE Transactions on》 |2021年第1期|92-102|共11页
  • 作者单位

    Tsinghua Univ Dept Biomed Engn Beijing 100084 Peoples R China;

    Tsinghua Univ Dept Psychol Beijing 100084 Peoples R China;

    Tsinghua Univ Dept Psychol Beijing 100084 Peoples R China;

    Tsinghua Univ Tsinghua Natl Lab Informat Sci & Technol Dept Comp Sci & Technol Beijing 100084 Peoples R China;

    Tsinghua Univ Dept Psychol Beijing 100084 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Emotion; inter-brain; EEG; implicit tagging;

    机译:情绪;大脑中;脑电图;隐式标记;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号