首页> 外文期刊>Affective Computing, IEEE Transactions on >AM-FED+: An Extended Dataset of Naturalistic Facial Expressions Collected in Everyday Settings
【24h】

AM-FED+: An Extended Dataset of Naturalistic Facial Expressions Collected in Everyday Settings

机译:AM-Fed +:在日常设置中收集的自然科表情的扩展数据集

获取原文
获取原文并翻译 | 示例

摘要

Public datasets have played a significant role in advancing the state-of-the-art in automated facial coding. Many of these datasets contain posed expressions and/or videos recorded in controlled lab conditions with little variation in lighting or head pose. As such, the data do not reflect the conditions observed in many real-world applications. We present AM-FED+ an extended dataset of naturalistic facial response videos collected in everyday settings. The dataset contains 1,044 videos of which 545 videos (263,705 frames or 21,859 seconds) have been comprehensively manually coded for facial action units. These videos act as a challenging benchmark for automated facial coding systems. All the videos contain gender labels and a large subset (77 percent) contain age and country information. Subject self-reported liking and familiarity with the stimuli are also included. We provide automated facial landmark detection locations for the videos. Finally, baseline action unit classification results are presented for the coded videos. The dataset is available to download online:https://www.affectiva.com/facial-expression-dataset/
机译:公共数据集在推进自动面部编码方面发挥了重要作用。其中许多数据集包含在受控实验室条件下记录的带有表达式和/或视频,在照明或头部姿势略有变化。因此,数据不反映在许多现实世界应用中观察到的条件。我们在日常设置中展示了AM-Fed +扩展数据集的自然性面部响应视频。数据集包含1,044个视频,其中545个视频(263,705帧或21,859秒)已全面地手动编码面部动作单位。这些视频充当自动面部编码系统的具有挑战性的基准。所有视频包含性别标签和大小的子集(77%)包含年龄和国家信息。还包括自我报告的喜好和熟悉刺激。我们为视频提供自动面部地标检测位置。最后,为编码视频提出了基线动作单位分类结果。数据集可用于在线下载:https://www.affectiva.com/facial-expression-dataset/

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号