首页> 外文期刊>Aerospace science and technology >On the influence of optimization algorithm and initial design on wing aerodynamic shape optimization
【24h】

On the influence of optimization algorithm and initial design on wing aerodynamic shape optimization

机译:优化算法和初始设计对机翼空气动力学形状优化的影响

获取原文
获取原文并翻译 | 示例

摘要

Aerodynamic shape optimization is a useful tool in wing design, but the impact of the choice of optimization algorithm and the multimodality of the design space in wing design optimization is still poorly understood. To address this, we benchmark both gradient-based and gradient-free optimization algorithms for computational fluid dynamics based aerodynamic shape optimization problems based on the Common Research Model wing geometry. The aerodynamic model solves the Reynolds-averaged Navier-Stokes equations with a Spalart-Allmaras turbulence model. The drag coefficient is minimized subject to lift, pitching moment, and geometry constraints, with up to 720 shape variables and 11 twist variables for two mesh sizes. We benchmark six gradient-based and three gradient-free algorithms by comparing both the accuracy of the optima and the computational cost. Most of the optimizers reach similar optima, but the gradient-based methods converge to more accurate solutions at a much lower computational cost. Since multimodality and nonsmoothness of the design space are common arguments for the use of gradient-free methods, we investigate these issues by solving the same optimization problem starting from a series of randomly generated initial geometries, as well as a wing based on the NACA 0012 airfoil with zero twist and constant thickness-to-chord ratio. All the optimizations consistently converge to practically identical results, where the differences in drag are within 0.05%, and the shapes and pressure distributions are very similar. Our overall conclusion is that the design space for wing design optimization with a fixed planform is largely convex, with a very small flat region that is multimodal because of numerical errors, However, this region is so small, and the differences in drag so minor, that the design space can be considered unimodal for all practical purposes. (C) 2018 Elsevier Masson SAS. All rights reserved.
机译:空气动力学形状优化是机翼设计中的有用工具,但是对优化算法的选择和设计空间的多模态性对机翼设计优化的影响仍然知之甚少。为了解决这个问题,我们针对基于共同研究模型机翼几何的基于流体动力学的空气动力学形状优化问题,对基于梯度和无梯度的优化算法进行了基准测试。空气动力学模型使用Spalart-Allmaras湍流模型求解雷诺平均Navier-Stokes方程。受制于升力,俯仰力矩和几何形状的限制,阻力系数被最小化,两个网格尺寸最多具有720个形状变量和11个扭曲变量。通过比较最佳精度和计算成本,我们对六种基于梯度的算法和三种无梯度算法进行了基准测试。大多数优化器都达到了相似的最优值,但是基于梯度的方法以更低的计算成本收敛到更精确的解决方案。由于设计空间的多峰性和不光滑性是使用无梯度方法的常见论点,因此我们通过解决一系列随机生成的初始几何图形以及基于NACA 0012的机翼的相同优化问题来研究这些问题。具有零扭曲和恒定的厚度与弦比的机翼。所有优化始终如一地收敛到几乎相同的结果,其中阻力差异在0.05%以内,并且形状和压力分布非常相似。我们的总体结论是,用于固定翼型的机翼设计优化的设计空间大部分是凸形的,具有一个很小的平坦区域,由于数值误差,该区域是多峰的。但是,该区域很小,阻力差异很小,出于所有实际目的,可以将设计空间视为单峰的。 (C)2018 Elsevier Masson SAS。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号