首页> 外文期刊>Aerospace and Electronic Systems, IEEE Transactions on >Separation and Tracking of Maneuvering Sources with ICA and Particle Filters using a New Switching Dynamic Model
【24h】

Separation and Tracking of Maneuvering Sources with ICA and Particle Filters using a New Switching Dynamic Model

机译:使用新的切换动力学模型,利用ICA和粒子滤波器对操纵源进行分离和跟踪

获取原文
获取原文并翻译 | 示例

摘要

The problem addressed in this work is to simultaneously separate multiple maneuvering sources and track their kinematics (position, velocity, and acceleration) in the working space. It is developed upon the incorporation of the nonstationary independent component analysis (ICA) and the nonlinear state estimator problems in a noisy environment. The sampling importance resampling (SIR) particle filter is exploited as the nonlinear state estimator to track current kinematics of the sources even though the state densities are non-Gaussian, and the observation equations are nonlinear. Given source kinematics, nonstationary ICA with a generalized Gaussian density function is used to separate each source signal. Also a novel scheme is proposed as a better alternative for the conventional interacting multiple model (IMM) algorithm to cover the unpredictable movement of the source over time. The proposed scheme deals with the uncertainty of each source motion by incorporating multiple dynamic models in the tracking process. The single best dynamic mode is identified at each time step for all the sources rather than tracking sources for several IMMs as in the IMM algorithm by finding the mode that tracks an indicator source with minimum root mean square error (RMSE). The method is strictly causal and can be used for online tracking. The algorithm performance has been verified by illustrating some simulation results.
机译:这项工作解决的问题是同时分离多个操纵源,并在工作空间中跟踪其运动学(位置,速度和加速度)。它是在噪声环境中结合非平稳独立分量分析(ICA)和非线性状态估计器问题后开发的。采样重要性重采样(SIR)粒子滤波器被用作非线性状态估计器,以跟踪源的当前运动,即使状态密度是非高斯的,并且观测方程也是非线性的。给定源运动学,具有广义高斯密度函数的非平稳ICA用于分离每个源信号。还提出了一种新颖的方案作为传统的交互多模型(IMM)算法的更好替代方案,以覆盖源随时间的不可预测的运动。所提出的方案通过在跟踪过程中合并多个动态模型来处理每个源运动的不确定性。在所有时间源上,为所有源确定唯一的最佳动态模式,而不是像在IMM算法中那样通过跟踪最小均方根误差(RMSE)的指标源的模式来跟踪多个IMM的源。该方法是严格的因果关系,可用于在线跟踪。通过说明一些仿真结果已经验证了算法性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号