首页> 外文期刊>Advances in Engineering Software >Non-parametric stochastic subset optimization utilizing multivariate boundary kernels and adaptive stochastic sampling
【24h】

Non-parametric stochastic subset optimization utilizing multivariate boundary kernels and adaptive stochastic sampling

机译:利用多元边界核和自适应随机抽样的非参数随机子集优化

获取原文
获取原文并翻译 | 示例

摘要

The implementation of NP-SSO (non-parametric stochastic subset optimization) to general design under uncertainty problems and its enhancement through various soft computing techniques is discussed. NP-SSO relies on iterative simulation of samples of the design variables from an auxiliary probability density, and approximates the objective function through kernel density estimation (KDE) using these samples. To deal with boundary correction in complex domains, a multivariate boundary KDE based on local linear estimation is adopted in this work. Also, a non-parametric characterization of the search space at each iteration using a framework based on support vector machine is formulated. To further improve computational efficiency, an adaptive kernel sampling density formulation is integrated and an adaptive, iterative selection of the number of samples needed for the KDE implementation is established.
机译:讨论了不确定性问题下NP-SSO(非参数随机子集优化)在一般设计中的实现及其通过各种软计算技术的增强。 NP-SSO依靠来自辅助概率密度的设计变量样本的迭代仿真,并使用这些样本通过核密度估计(KDE)逼近目标函数。为了处理复杂域的边界校正,本文采用基于局部线性估计的多元边界KDE。此外,使用基于支持向量机的框架,制定了每次迭代时搜索空间的非参数表征。为了进一步提高计算效率,集成了自适应内核采样密度公式,并建立了KDE实现所需的采样数量的自适应迭代选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号