首页> 外文期刊>Advances in computational sciences and technology >An Efficient Classification of MRI Brain Images and 3D Reconstruction Using Depth Map Estimation
【24h】

An Efficient Classification of MRI Brain Images and 3D Reconstruction Using Depth Map Estimation

机译:使用深度图估计对MRI脑图像进行有效分类和3D重建

获取原文
获取原文并翻译 | 示例

摘要

Digital Image processing is applied under the area of medicine so as to distinguish the ailments in the body of humans. The three dimensional reconstruction (3D) of tumor from the medicinal images is a significant procedure in the area of medicine while it assists the physicians in identification, surgical planning and biological investigation. This article includes two phases namely, i) Classification and ii) 3D reconstruction. Originally the input image is obtained from the MRI database which then undergoes skull stripping is a pre-processing phase for identifying the brain tumor that purges the redundant borough from the image. In the classification phase, the skull Stripped images undergoes segmentation by means of the watershed algorithm so as to identify the segmented tumor. Then from the segmented image the attributes such as shape, intensity and texture are extorted. Subsequently the attributes are lessened via the Principle Component Analysis (PCA). Depending upon the condensed attributes, the probabilistic neural network classifier categorizes the normal and the abnormal (tumor) images. The next phase is the 3D reconstruction phase, we intended the depth assessment for the skull stripped image by means of the guided filter. When the depth is attained, the visual relic of the created left view and right view images yields the ultimate 3D reconstruction outcomes.
机译:在医学领域应用了数字图像处理,以区分人体中的疾病。从医学图像对肿瘤进行三维重建(3D)是医学领域的重要程序,同时可帮助医生进行识别,手术计划和生物学研究。本文包括两个阶段,即i)分类和ii)3D重建。最初,输入图像是从MRI数据库中获得的,然后进行颅骨剥离是一个预处理阶段,用于识别从图像中清除多余区域的脑肿瘤。在分类阶段,通过分水岭算法对颅骨剥离图像进行分割,以识别分割出的肿瘤。然后从分割的图像中提取出诸如形状,强度和纹理之类的属性。随后,通过主成分分析(PCA)减少属性。取决于压缩的属性,概率神经网络分类器将正常图像和异常(肿瘤)图像分类。下一个阶段是3D重建阶段,我们打算借助导引滤波器对颅骨剥离图像进行深度评估。当达到深度时,创建的左视图和右视图图像的视觉遗迹将产生最终的3D重建结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号