首页> 外文期刊>Advanced Optical Materials >Approaching the Intrinsic Lifetime and Modulating a Graphene Plasmonic Resonance at a Few Hundred GHz
【24h】

Approaching the Intrinsic Lifetime and Modulating a Graphene Plasmonic Resonance at a Few Hundred GHz

机译:接近内在寿命并在几百GHz下调制石墨烯等级共振

获取原文
获取原文并翻译 | 示例
           

摘要

Graphene-based metamaterials exhibit large tunability, low insertion loss, and high field confinement compared with metal-based structures. Graphene-based metamaterials may find numerous applications in optical modulators, optoelectronic devices, and chemical sensors in the few-hundred-GHz and low-THz regime, constituting a new frontier as electronics and wireless communication continuously push further to higher frequencies. However, the main challenge is overcoming loss in graphene-based resonant applications. Here, a low-loss graphene plasmonic resonant modulator is demonstrated that operates at a few hundred GHz and 1 THz. The modulation depth is in excess of 35% with two layers of graphene. Numerical simulations show good agreement with the experimental results and reveal 100-200 fs lifetimes, which are approaching the intrinsic lifetime of the graphene plasmon due to the suppression of loss from phonon and edge scattering. The above values are the closest to electronic frequencies and represent the longest plasmon lifetime and largest modulation depth in graphene plasmon resonance devices reported so far.
机译:与基于金属的结构相比,基于石墨烯基的超材料表现出大量的可调性,低插入损耗和高场限制。基于石墨烯的超材料可以在几百GHz和低THZ制度中发现光调制器,光电器件和化学传感器中的许多应用,构成新的前沿作为电子和无线通信连续推动到更高的频率。然而,主要挑战是克服基于石墨烯的谐振应用损失。这里,证明了低损耗石墨烯等级谐振调制器,其在几百GHz和1至THz上运行。调制深度超过35%,具有两层石墨烯。数值模拟与实验结果良好的一致性,揭示了100-200 FS寿命,这是由于抑制来自声子和边缘散射的损失而接近石墨烯等离子体的内在寿命。上述值是最接近的电子频率,并且代表到目前为止报道的石墨烯等离子体谐振装置中最长的等离子体寿命和最大调制深度。

著录项

  • 来源
    《Advanced Optical Materials》 |2019年第11期|1900315.1-1900315.7|共7页
  • 作者单位

    Chinese Acad Sci Inst Phys Beijing Natl Lab Condensed Matter Phys Beijing 100190 Peoples R China|Huazhong Univ Sci & Technol Sch Opt & Elect Informat Wuhan 430074 Hubei Peoples R China|Univ Chinese Acad Sci Sch Phys Sci Beijing 100049 Peoples R China;

    Chinese Acad Sci Inst Phys Beijing Natl Lab Condensed Matter Phys Beijing 100190 Peoples R China|Univ Chinese Acad Sci Sch Phys Sci Beijing 100049 Peoples R China;

    Chinese Acad Sci Inst Phys Beijing Natl Lab Condensed Matter Phys Beijing 100190 Peoples R China|Univ Chinese Acad Sci Sch Phys Sci Beijing 100049 Peoples R China;

    South China Univ Technol Coll Phys & Optoelect Guangzhou 510640 Guangdong Peoples R China;

    Capital Normal Univ Dept Phys Beijing Key Lab Terahertz Spect & Imaging Key Lab Terahertz Optoelect Minist Educ Beijing 100048 Peoples R China;

    Chinese Acad Sci Inst Phys Beijing Natl Lab Condensed Matter Phys Beijing 100190 Peoples R China|Univ Chinese Acad Sci Sch Phys Sci Beijing 100049 Peoples R China;

    Chinese Acad Sci Inst Phys Beijing Natl Lab Condensed Matter Phys Beijing 100190 Peoples R China;

    Chinese Acad Sci Inst Phys Beijing Natl Lab Condensed Matter Phys Beijing 100190 Peoples R China|Univ Chinese Acad Sci Sch Phys Sci Beijing 100049 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    graphene; metamaterials; plasmonics; THz devices;

    机译:石墨烯;超材料;血管分子;THZ设备;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号