...
首页> 外文期刊>Advanced Materials >Computation-Guided Synthesis of New Garnet-Type Solid-State Electrolytes via an Ultrafast Sintering Technique
【24h】

Computation-Guided Synthesis of New Garnet-Type Solid-State Electrolytes via an Ultrafast Sintering Technique

机译:通过超快烧结技术计算新的石榴石型固态电解质的合成

获取原文
获取原文并翻译 | 示例

摘要

The discovery of new solid-state electrolytes (SSEs) can be guided by computation for next-generation Li batteries toward higher energy density and better safety. However, conventional synthetic methods often suffer from severe loss of Li and poor material quality, therefore preventing the promise of the predicted SSE candidates to be realized. In this study, computationally predicted SSEs with desirable material quality are synthesized via an ultrafast sintering technique. Three new garnet-type Li(+)conductors, including Li6.5Nd3Zr1.5Ta0.5O12(LNZTO), Li6.5Sm3Zr1.5Ta0.5O12(LSZTO), and Li-6.5(Sm0.5La0.5)(3)Zr1.5Ta0.5O12(L-LSZTO), are screened by density functional theory to exhibit good synthesizability and stability. The ultrafast sintering method by Joule heating effectively shorten the sintering time from several hours to 25 s, thereby reducing the Li loss and effectively merging the grains toward high material quality. In agreement with the computational prediction, LNZTO demonstrates the best synthesizability and phase stability, thereby achieving the highest conductivity of 2.3 x 10(-4)S cm(-1)among the three new SSE candidates. Using a current density of 0.2 mA cm(-2), the Li/LNZTO/Li symmetric cell can cycle for approximate to 90 h without obvious increase of overpotentials. This study showcases the successful realization of computational predictions by the ultrafast sintering technique for the rapid optimization and screening of high-performance SSEs.
机译:新的固态电解质(SSES)的发现可以通过对下一代LI电池的计算来指导更高的能量密度和更好的安全性。然而,常规的合成方法经常遭受严重损失的李和材料质量差,因此防止了预测的SSE候选人的承诺。在该研究中,通过超快烧结技术合成具有所需材料质量的计算预测的SSE。三种新的石榴石型Li(+)导体,包括Li6.5nd3zr1.5ta0.5012(Lnzto),Li6.5sm3zr1.5ta0.5012(LSZto)和Li-6.5(SM0.5LA0.5)(3)ZR1。 5TA0.5O12(L-LSZTO)被密度泛函理论筛选,以表现出良好的合成性和稳定性。通过焦耳加热的超快烧结方法有效地将烧结时间从几小时从几小时缩短到<25秒,从而减少了锂损失并有效地将谷物与高质量质量合并。在与计算预测的同意中,LNZTO证明了最佳的合成性和相位稳定性,从而在三个新的SSE候选中实现了2.3×10(-4)厘米(-1)的最高导电率。使用电流密度为0.2 mA cm(-2),LI / LNZTO / Li对称细胞可以循环近似为90小时,而不会显着增加过电位。本研究展示了超快烧结技术的成功实现计算预测,用于快速优化和筛选高性能SSE。

著录项

  • 来源
    《Advanced Materials 》 |2020年第46期| 2005059.1-2005059.7| 共7页
  • 作者单位

    Univ Maryland Dept Mat Sci & Engn College Pk MD 20742 USA;

    Univ Maryland Dept Mat Sci & Engn College Pk MD 20742 USA;

    Univ Maryland Dept Mat Sci & Engn College Pk MD 20742 USA;

    Univ Maryland Dept Mat Sci & Engn College Pk MD 20742 USA;

    Univ Maryland Dept Mat Sci & Engn College Pk MD 20742 USA;

    Univ Maryland Dept Mat Sci & Engn College Pk MD 20742 USA;

    Univ Maryland Dept Mat Sci & Engn College Pk MD 20742 USA;

    Univ Maryland Dept Mat Sci & Engn College Pk MD 20742 USA;

    Univ Maryland Dept Mat Sci & Engn College Pk MD 20742 USA|Univ Maryland Ctr Mat Innovat College Pk MD 20742 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    batteries; ceramics; solid-state electrolytes; ultrafast sintering;

    机译:电池;陶瓷;固态电解质;超快烧结;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号