首页> 外文会议>Pacific Rim Meeting on Electrochemical and Solid-State Science >Engineered Electrode-Electrolyte Interface for Moisture-Stable, Dendrite-Free Garnet-Type Solid-State Electrolytes
【24h】

Engineered Electrode-Electrolyte Interface for Moisture-Stable, Dendrite-Free Garnet-Type Solid-State Electrolytes

机译:用于水分稳定的工程电极电解质界面,无树枝状石榴石型固态电解质

获取原文

摘要

Lithium-ion batteries (LIBs) are becoming increasingly universal energy storage systems to power most portable electronic devices and electric vehicles due to their high energy densities and long cycle life. However, with increasing applications of LIBs into grid storage, an increase in the efficiency of LIBs is essential to meet today's requirements. Solid-state batteries using garnet-type solid-state electrolytes (SSEs) are promising contenders for safe, high energy density devices due to their high lithium-ion conductivity at room temperature, wide electrochemical stability window, and the use of lithium metal anode. However, garnet-type SSEs exhibit formidable challenges including the formation of lithium dendrites, instability in moisture containing atmosphere, and their high interfacial resistance. Although several strategies have been employed to improve the issues related to garnet-type SSE, most approaches focus on one challenge and fail to solve all other challenges. Herein, we demonstrate an engineered electrode-electrolyte interface with surface modification of Li_(6.5)La_3Zr_(1.5)Ta_(0.5)O_(12) (LLZT) garnet-type SSEs by two-dimensional hexagonal boron nitride (h-BN) nanosheets to solve the interfacial issues. Detailed spectroscopic evidence reveals that the surface modification effectively protects the LLZT from moisture-induced chemical degradation and suppresses the formation of adverse surface impurities for over 5 days in an open atmosphere. The interfacial resistance value has reduced nearly 10-fold when compared to the uncoated LLZT and exhibits stable lithium plating/stripping behavior for over 1400 hours at 0.2 mA cm~(-2). Advanced in-situ Raman analysis elucidates that h-BN layers remain stable during cycling and prevents the structural transformation of the garnet-type SSE at the interface.
机译:锂离子电池(LIB)由于其高能量密度和长循环寿命而导致最常用的电子设备和电动车辆。然而,随着LIBS对网格存储的应用,Libs效率的增加对于满足今天的要求至关重要。使用石榴石型固态电解质(SSE)的固态电池是安全,高能量密度装置的竞争者,由于其在室温,宽电化学稳定性窗口宽的锂离子传导性以及锂金属阳极的使用中,具有安全性高能量密度装置。然而,石榴石型Sses表现出可强大的挑战,包括形成锂枝晶,含水分的不稳定性,以及它们的高界面抗性。虽然已经采用了几项策略来改善与石榴石型证书相关的问题,但大多数方法都侧重于一个挑战,并没有解决所有其他挑战。在此,我们通过二维六边形硼氮化物(H-BN)纳米晶片(H-BN)纳米晶片解决界面问题。详细的光谱证据表明,表面改性有效地保护LLZT免受水分诱导的化学降解,并在开放的大气中抑制不良表面杂质的形成超过5天。与未涂覆的LLZT相比,界面电阻值降低了近10倍,并且在0.2 mA cm〜(-2)下表现出稳定的镀锂/汽提行为超过1400小时。先进的原位拉曼分析阐明了H-BN层在循环期间保持稳定,防止在界面处的石榴石型SSE的结构变换。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号