...
首页> 外文期刊>Advanced Functional Materials >Synthesis, Mechanism, and Gas-Sensing Application of Surfactant Tailored Tungsten Oxide Nanostructures
【24h】

Synthesis, Mechanism, and Gas-Sensing Application of Surfactant Tailored Tungsten Oxide Nanostructures

机译:表面活性剂定制的氧化钨纳米结构的合成,机理和气敏应用

获取原文
获取原文并翻译 | 示例

摘要

Widely applicable nonaqueous solution routes have been employed for the syntheses of crystalline nanostructured tungsten oxide particles from a tungsten hexachloride precursor. Here, a systematic study on the crystallization and assembly behavior of tungsten oxide products made by using the bioligand deferoxamine mesylate (DFOM) (product Ⅰ), the two chelating ligands hexadecyltrimethylammoniumbromide (CTAB) (Ⅱ) and poly(alkylene oxide) block copolymer (Pluronic P123) (Ⅲ) is presented. The mechanistic pathways for the material synthesis are also discussed in detail. The tungsten oxide nanomaterials and reaction solutions are characterized by Fourier transform IR, ~1H, and ~(13)C NMR spectroscopies, powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, and selected-area electron diffraction. The indexing of the line pattern suggests WO_3 is in its monoclinic structure with a = 0.7297 nm, b = 0.7539 nm, c = 0.7688 nm, and β = 90.91 °. The nanoparticles formed have various architectures, such as chromosomal shapes (product Ⅰ) and slates (Ⅱ), which are quite different from the mesoporous one (Ⅲ) that has internal pores or mesopores ranging from 5 to 15 nm. The nanoparticles obtained from all the synthetic procedures are in the range of 40-60 nm. The investigation of the gas-sensing properties of these materials indicate that all the sensors have good baseline stability and the sensors fabricated from material Ⅲ present very different response kinetics and different CO detection properties. The possibility of adjusting the morphology and by that tuning the gas-sensing properties makes the preparation strategies used interesting candidates for fabricating gas-sensing materials.
机译:广泛适用的非水溶液途径已被用于由六氯化钨前体合成晶体纳米结构的氧化钨颗粒。在这里,系统地研究了使用生物配体去铁胺甲磺酸盐(DFOM)(产物Ⅰ),两个螯合配体十六烷基三甲基溴化铵(CTAB)(Ⅱ)和聚(环氧烷)嵌段共聚物制备的氧化钨产物的结晶和组装行为。介绍了Pluronic P123)(Ⅲ)。还详细讨论了材料合成的机械途径。氧化钨纳米材料和反应溶液的特征在于傅立叶变换红外光谱,〜1H和〜(13)C NMR光谱,粉末X射线衍射,扫描电子显微镜,透射电子显微镜(TEM),高分辨率TEM并选择区域电子衍射。线型的索引表明WO_3处于单斜晶结构,a = 0.7297 nm,b = 0.7539 nm,c = 0.7688 nm,β= 90.91°。所形成的纳米颗粒具有多种结构,例如染色体形状(产物Ⅰ)和板岩(Ⅱ),这与具有5至15 nm的内部孔或中孔的中孔(Ⅲ)有很大的不同。从所有合成程序获得的纳米颗粒在40-60nm的范围内。对这些材料的气敏特性的研究表明,所有传感器都具有良好的基线稳定性,并且由材料Ⅲ制成的传感器表现出非常不同的响应动力学和不同的CO检测特性。调整形态并通过调整气敏特性的可能性使制备策略成为制造气敏材料的有趣候选材料。

著录项

  • 来源
    《Advanced Functional Materials 》 |2009年第11期| 1767-1774| 共8页
  • 作者单位

    Institute of Physical Chemistry, Tuebingen University Aufder Morgenstelle 15, 72076 Tuebingen (Germany);

    National Institute of R & D for Material Physics 77125, Bucharest-Magurele (Romania);

    National Institute of R & D for Material Physics 77125, Bucharest-Magurele (Romania);

    Institute of Physical Chemistry, Tuebingen University Aufder Morgenstelle 15, 72076 Tuebingen (Germany);

    Institute of Physical Chemistry, Tuebingen University Aufder Morgenstelle 15, 72076 Tuebingen (Germany);

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号