首页> 外文OA文献 >Synthesis and fundamental understanding of metal oxide nanostructures for gas-sensing applications
【2h】

Synthesis and fundamental understanding of metal oxide nanostructures for gas-sensing applications

机译:用于气体传感应用的金属氧化物纳米结构的合成和基本理解

摘要

Gas sensors are indispensable aspects of our life as it warns us about the dangerous gases in our environment. Semiconducting oxide gas sensors are by far the most popular type of sensors, because of their simple processing and low fabrication cost. The early metal oxide-based sensor materials however often exhibit several undesirable characteristics, such as poor selectivity, sensitivity to moisture, long-term signal drift and, slow response time. Hence, the development of fast-responding gas sensors with high sensitivity and selectivity is highly desirable. The introduction of nanotechnology has attracted large interests in gas-sensing research, largely because nanoscale particles offer a larger high surface area to volume ratio and enhanced functionalities compared to bulk particles. In particular, the synthesis of metal oxide nanostructures with controlled morphology is highly attractive because the properties of nanostructure depend not only on their composition, but also on their structure, phase, shape, size, and size distribution. Many efforts have been carried out to improve the „3S‟: sensitivity, selectivity, and stability of semiconductor gas sensors by utilizing metal oxide nanostructures. However, some challenges still exist in both synthesis and fundamental understanding of the gas-sensing mechanism of nanoscale metal oxides.This thesis aims to explore the use of nanostructures based on n-type semiconducting oxides as gas sensor materials for the detection of VOCs and to develop different ways to enhance the sensitivity of these metal oxide nanostructures through means of structuraliiicontrol, surface engineering and introduction of additives such as metal oxides and noble metals. Our research method involves the use of various microscopy, diffraction, and spectroscopy techniques to characterize the achieved metal oxide nanostructures or nanocomposites. To gain a further insights understanding of the metal oxide/gas interactions during the sensing process, it is important to use multi-scale theoretical methods validated by experimental techniques. The findings will benefit the design and construction of gas sensors with desirable properties/performance (sensitivity, selectivity and stability) for potential applications in environmental monitoring and detection.
机译:气体传感器是我们生活中必不可少的方面,它会警告我们有关环境中危险气体的信息。迄今为止,半导体氧化物气体传感器是最流行的传感器,因为它们的处理简单且制造成本低。然而,早期的基于金属氧化物的传感器材料通常表现出一些不良的特性,例如选择性差,对湿气的敏感性,长期的信号漂移以及响应时间慢。因此,非常需要开发具有高灵敏度和选择性的快速响应气体传感器。纳米技术的引入引起了气体传感研究的极大兴趣,这主要是因为与大颗粒相比,纳米级颗粒具有更大的高表面积体积比和增强的功能性。特别地,具有可控形态的金属氧化物纳米结构的合成极具吸引力,因为纳米结构的性质不仅取决于它们的组成,而且取决于它们的结构,相,形状,尺寸和尺寸分布。通过利用金属氧化物纳米结构,已经进行了许多努力来改善“ 3S”:灵敏度,选择性和半导体气体传感器的稳定性。然而,在合成和基本理解纳米级金属氧化物的气敏机理方面仍然存在一些挑战。本论文旨在探索基于n型半导体氧化物的纳米结构作为气体传感器材料用于VOC的检测和应用。通过结构控制,表面工程和添加剂(例如金属氧化物和贵金属)的引入,开发出不同的方法来增强这些金属氧化物纳米结构的敏感性。我们的研究方法涉及使用各种显微镜,衍射和光谱技术来表征获得的金属氧化物纳米结构或纳米复合材料。为了进一步了解传感过程中金属氧化物/气体的相互作用,重要的是使用通过实验技术验证的多尺度理论方法。该发现将有益于具有理想特性/性能(灵敏度,选择性和稳定性)的气体传感器的设计和构造,以用于环境监测和检测的潜在应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号