首页> 外文期刊>Advanced Functional Materials >Non-Toxic Dry-Coated Nanosilver for Plasmonic Biosensors
【24h】

Non-Toxic Dry-Coated Nanosilver for Plasmonic Biosensors

机译:用于等离子体生物传感器的无毒干膜纳米银

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The plasmonic properties of noble metals facilitate their use for in vivo bio-applications such as targeted drug delivery and cancer cell therapy. Nanosilver is best suited for such applications as it has the lowest plasmonic losses among all such materials in the UV-visible spectrum. Its toxicity, however, can destroy surrounding healthy tissues and thus, hinders its safe use. Here, that toxicity against a model biological system (Escherichia coli) is "cured" or blocked by coating nanosilver hermetically with a about 2 nm thin SiO_2 layer in one-step by a scalable flame aerosol method followed by swirl injection of a silica precursor vapor (hexamethyldisiloxane) without reducing the plasmonic performance of the enclosed or encapsulated silver nanoparticles (20-40 nm in diameter as determined by X-ray diffraction and microscopy). This creates the opportunity to safely use powerful nanosilver for intracellular bio-applications. The label-free biosensing and surface bio-functionalization of these ready-to-use, non-toxic (benign) Ag nanoparticles is presented by measuring the adsorption of bovine serum albumin (BSA) in a model sensing experiment. Furthermore, the silica coating around nanosilver prevents its agglomeration or flocculation (as determined by thermal annealing, optical absorption spectroscopy and microscopy) and thus, enhances its biosensitivity, including bioimaging as determined by dark field illumination.
机译:贵金属的等离子体性质促进了它们在体内生物应用中的应用,例如靶向药物输送和癌细胞治疗。纳米银最适合此类应用,因为在紫外可见光谱中,纳米银在所有此类材料中具有最低的等离子体损失。然而,它的毒性会破坏周围的健康组织,从而阻碍其安全使用。在这里,对模型生物系统(大肠杆菌)的毒性通过可缩放火焰气溶胶法一步一步用可伸缩火焰气溶胶法气密涂覆纳米银约2nm的SiO_2层来“治愈”或阻止,然后旋流注入二氧化硅前体蒸气(六甲基二硅氧烷),而不会降低封闭或封装的银纳米粒子的等离子体性能(通过X射线衍射和显微镜确定直径为20-40 nm)。这为安全地将强大的纳米银用于细胞内生物应用创造了机会。这些即用型无毒(良性)Ag纳米颗粒的无标记生物传感和表面生物功能化是通过在模型传感实验中测量牛血清白蛋白(BSA)的吸附来实现的。此外,纳米银周围的二氧化硅涂层可防止其团聚或絮凝(通过热退火,光学吸收光谱法和显微镜确定),从而增强其生物敏感性,包括通过暗场照明确定的生物成像。

著录项

  • 来源
    《Advanced Functional Materials》 |2010年第24期|p.4250-4257|共8页
  • 作者单位

    Particle Technology Laboratory Institute of Process Engineering Department of Mechanical and Process Engineering Sonneggstrasse 3, ETH Zurich, 8092 Zurich (Switzerland);

    Laboratory of Biosensors and Bioelectronics Department of Information Technology and Electrical Engineering Materials Research Center ETH Zurich, CH-8092 Zurich (Switzerland);

    Particle Technology Laboratory Institute of Process Engineering Department of Mechanical and Process Engineering Sonneggstrasse 3, ETH Zurich, 8092 Zurich (Switzerland);

    Particle Technology Laboratory Institute of Process Engineering Department of Mechanical and Process Engineering Sonneggstrasse 3, ETH Zurich, 8092 Zurich (Switzerland);

    Laboratory of Biosensors and Bioelectronics Department of Information Technology and Electrical Engineering Materials Research Center ETH Zurich, CH-8092 Zurich (Switzerland);

    Particle Technology Laboratory Institute of Process Engineering Department of Mechanical and Process Engineering Sonneggstrasse 3, ETH Zurich, 8092 Zurich (Switzerland);

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号