...
首页> 外文期刊>Advanced Functional Materials >Tuning of Charge Densities in Graphene by Molecule Doping
【24h】

Tuning of Charge Densities in Graphene by Molecule Doping

机译:通过分子掺杂调节石墨烯中的电荷密度

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The tuning of carrier concentrations in graphene is at the heart of graphene-based nanoelectronic and optoelectronic applications. Molecular doping, that is, taking charges from the adsorbed molecules, shows promise as a means by which to change carrier density in graphene while retaining relative high mobility. However, poor control over doping concentrations is a major obstacle to practical applications. Here, we show that lattice disorders induced by plasma exposure can be used as anchor groups. These groups serve as centers of molecule adsorption and facilitate orbital overlap between graphene and adsorbates (melamine), thus allowing for selective and tunable doping. The carrier concentration revealed by Raman shift can be progressively adjusted up to 1.4 x TO13 cm"2, depending on the coverage of melamine molecules and doping temperature. The electronic band structures of the graphene-melamine complex were calculated using density functional theory for adsorption over ideal graphene and over non-ideal graphene with Stone-Wales (5-7-7-5) defects. It is shown that charge transfer for adsorption on ideal graphene is negligible, while adsorption on graphene with Stone-Wales defects results in weak hole doping, which is consistent with the progressive increase of carrier density with increasing melamine coverage.
机译:石墨烯中载流子浓度的调节是基于石墨烯的纳米电子和光电应用的核心。分子掺杂,即从吸附的分子中获取电荷,显示出有望作为一种在保持相对较高迁移率的同时改变石墨烯载流子密度的手段。然而,对掺杂浓度的不良控制是实际应用的主要障碍。在这里,我们显示了由等离子体暴露引起的晶格紊乱可以用作锚定基团。这些基团充当分子吸附的中心,并促进石墨烯与被吸附物(三聚氰胺)之间的轨道重叠,从而实现选择性和可调掺杂。根据三聚氰胺分子的覆盖范围和掺杂温度,通过拉曼位移揭示的载流子浓度可逐步调节至1.4 x TO13 cm“ 2。使用密度泛函理论计算石墨烯-三聚氰胺配合物的电子能带结构理想石墨烯和具有Stone-Wales(5-7-7-5)缺陷的非理想石墨烯的研究表明,吸附在理想石墨烯上的电荷转移可以忽略不计,而在具有Stone-Wales缺陷的石墨烯上的吸附导致弱空穴掺杂,这与随着三聚氰胺覆盖率的增加,载流子密度逐渐增加是一致的。

著录项

  • 来源
    《Advanced Functional Materials》 |2011年第14期|p.2687-2692|共6页
  • 作者单位

    National Tsing Hua University Department of Electrical Engineering Hsinchu 30013, Taiwan;

    National Tsing Hua University Department of Electrical Engineering Hsinchu 30013, Taiwan;

    Max-Planck Institute for Solid State Research Heisenbergstr. 1, 70569 Stuttgart, Germany;

    National Tsing Hua University Department of Electrical Engineering Hsinchu 30013, Taiwan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号