首页> 外文期刊>Advanced engineering informatics >Extended modeling procedure based on the projected sample for forecasting short-term electricity consumption
【24h】

Extended modeling procedure based on the projected sample for forecasting short-term electricity consumption

机译:基于预计样本的扩展建模程序,用于预测短期用电量

获取原文
获取原文并翻译 | 示例

摘要

Effectively forecasting the overall electricity consumption is vital for policy makers in rapidly developing countries. It can provide guidelines for planning electricity systems. However, common forecasting techniques based on large historical data sets are not applicable to these countries because their economic growth is high and unsteady; therefore, an accurate forecasting technique using limited samples is crucial. To solve this problem, this study proposes a novel modeling procedure. First, the latent information function is adopted to analyze data features and acquire hidden information from collected observations. Next, the projected sample generation is developed to extend the original data set for improving the forecasting performance of back propagation neural networks. The effectiveness of the proposed approach is estimated using three cases. The experimental results show that the proposed modeling procedure can provide valuable information for constructing a robust model, which yields precise predictions with the limited time series data. The proposed modeling procedure is useful for small time series forecasting.
机译:对于迅速发展的国家的政策制定者而言,有效预测总体用电量至关重要。它可以为规划电力系统提供指导。但是,基于大型历史数据集的常用预测技术不适用于这些国家,因为它们的经济增长高且不稳定;因此,使用有限样本的准确预测技术至关重要。为了解决这个问题,本研究提出了一种新颖的建模程序。首先,采用潜在信息功能来分析数据特征并从收集到的观测数据中获取隐藏信息。接下来,开发了预计的样本生成以扩展原始数据集,以改善反向传播神经网络的预测性能。所提出的方法的有效性通过三种情况进行估算。实验结果表明,所提出的建模程序可以为构建鲁棒模型提供有价值的信息,该模型可以在有限的时间序列数据下产生精确的预测。所提出的建模过程对于小时间序列预测很有用。

著录项

  • 来源
    《Advanced engineering informatics》 |2016年第2期|211-217|共7页
  • 作者单位

    Department of Management Science and Engineering, Business School, Ningbo University, No. 818, Fenghua Road, Ningbo City, Zhejiang Province 315211, China;

    Department of Business Administration, Chung Yuan Christian University, No. 200, Chung-Pei Road, Chung-Li District, Taoyuan City, Taiwan 32023, ROC;

    Department of Business Administration, Chung Yuan Christian University, No. 200, Chung-Pei Road, Chung-Li District, Taoyuan City, Taiwan 32023, ROC;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Forecasting; Small data set; Latent information; Electricity consumption;

    机译:预测;小数据集;潜在信息;用电量;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号