首页> 外文期刊>Advanced engineering informatics >Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification
【24h】

Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification

机译:基于层次卷积网络的健康状态分类的滚动轴承智能故障诊断

获取原文
获取原文并翻译 | 示例

摘要

Rolling bearing tips are often the most susceptible to electro-mechanical system failure due to highspeed and complex working conditions, and recent studies on diagnosing bearing health using vibration data have developed an assortment of feature extraction and fault classification methods. Due to the strong non-linear and non-stationary characteristics, an effective and reliable deep learning method based on a convolutional neural network (CNN) is investigated in this paper making use of cognitive computing theory, which introduces the advantages of image recognition and visual perception to bearing fault diagnosis by simulating the cognition process of the cerebral cortex. The novel feature representation method for bearing data is first discussed using supervised deep learning with the goal of identifying more robust and salient feature representations to reduce information loss. Next, the deep hierarchical structure is trained in a robust manner that is established using a transmitting rule of greedy training layer by layer. Convolution computation, rectified linear units, and sub-sampling are applied for weight replication and reducing the number of parameters that need to be learned to improve the general feedforward back propagation training. The CNN model could thus reduce learning computation requirements in the temporal dimension, and an invariance level of working condition fluctuation and ambient noise is provided by identifying the elementary features of bearings. A top classifier followed by a back propagation process is used for fault classification. Contrast experiments and analyses have been undertaken to delineate the effectiveness of the CNN model for fault classification of rolling bearings.
机译:由于高速和复杂的工作条件,滚动轴承尖端通常最容易受到机电系统故障的影响,最近有关使用振动数据诊断轴承健康的研究已经开发出各种特征提取和故障分类方法。由于其强大的非线性和非平稳特性,本文利用认知计算理论研究了一种基于卷积神经网络(CNN)的有效且可靠的深度学习方法,该方法介绍了图像识别和可视化的优势通过模拟大脑皮层的认知过程来进行轴承故障诊断。首先使用监督深度学习讨论用于承载数据的新颖特征表示方法,其目的是识别更健壮和显着的特征表示以减少信息丢失。接下来,使用逐层训练贪婪训练的传输规则建立的鲁棒方式训练深度分层结构。卷积计算,整流线性单位和子采样可用于权重复制,并减少了需要学习以改善常规前馈反向传播训练的参数数量。因此,CNN模型可以减少时间维度上的学习计算需求,并且通过识别轴承的基本特征,可以提供工作条件波动和环境噪声的不变水平。顶部分类器后跟反向传播过程用于故障分类。已经进行了对比实验和分析,以描述CNN模型对滚动轴承的故障分类的有效性。

著录项

  • 来源
    《Advanced engineering informatics》 |2017年第4期|139-151|共13页
  • 作者

    Chen Lu; Zhenya Wang; Bo Zhou;

  • 作者单位

    School of Reliability and Systems Engineering, Beihang University, Xueyuan Road, Haidian District, Beijing 100191, China;

    School of Reliability and Systems Engineering, Beihang University, Xueyuan Road, Haidian District, Beijing 100191, China;

    School of Reliability and Systems Engineering, Beihang University, Xueyuan Road, Haidian District, Beijing 100191, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Fault diagnosis; Convolutional neural network; Rolling bearing;

    机译:故障诊断;卷积神经网络滚动轴承;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号