首页> 外文期刊>Advanced engineering informatics >Comparison of multi-objective evolutionary algorithms in hybrid Kansei engineering system for product form design
【24h】

Comparison of multi-objective evolutionary algorithms in hybrid Kansei engineering system for product form design

机译:产品形态设计的混合Kansei工程系统中多目标进化算法的比较

获取原文
获取原文并翻译 | 示例

摘要

Understanding the affective needs of customers is crucial to the success of product design. Hybrid Kansei engineering system (HKES) is an expert system capable of generating products in accordance with the affective responses. HKES consists of two subsystems: forward Kansei engineering system (FKES) and backward Kansei engineering system (BKES). In previous studies, HKES was based primarily on single-objective optimization, such that only one optimal design was obtained in a given simulation run. The use of multi-objective evolutionary algorithm (MOEA) in HKES was only attempted using the non-dominated sorting genetic algorithm-II (NSGA-II), such that very little work has been conducted to compare different MOEAs. In this paper, we propose an approach to HKES combining the methodologies of support vector regression (SVR) and MOEAs. In BKES, we constructed predictive models using SVR. In FKES, optimal design alternatives were generated using MOEAs. Representative designs were obtained using fuzzy c-means algorithm for clustering the Pareto front into groups. To enable comparison, we employed three typical MOEAs: NSGA-II, the Pareto envelope-based selection algorithm-II (PESA-II), and the strength Pareto evolutionary algorithm-2 (SPEA2). A case study of vase form design was provided to demonstrate the proposed approach. Our results suggest that NSGA-II has good convergence performance and hybrid performance; in contrast, SPEA2 provides the strong diversity required by designers. The proposed HKES is applicable to a wide variety of product design problems, while providing creative design ideas through the exploration of numerous Pareto optimal solutions.
机译:了解客户的情感需求对于产品设计的成功至关重要。混合型Kansei工程系统(HKES)是能够根据情感反应生成产品的专家系统。 HKES包含两个子系统:前向Kansei工程系统(FKES)和向后Kansei工程系统(BKES)。在以前的研究中,HKES主要基于单目标优化,因此在给定的模拟运行中只能获得一种最佳设计。仅尝试使用非支配排序遗传算法-II(NSGA-II)尝试在HKES中使用多目标进化算法(MOEA),因此很少进行工作来比较不同的MOEA。在本文中,我们提出了一种结合支持向量回归(SVR)和MOEA方法的HKES方法。在BKES中,我们使用SVR构建了预测模型。在FKES中,使用MOEA生成了最佳的设计替代方案。使用模糊c均值算法获得的代表性设计用于将Pareto前沿聚类为组。为了进行比较,我们采用了三种典型的MOEA:NSGA-II,基于帕累托包络的选择算法-II(PESA-II)和强度帕累托进化算法-2(SPEA2)。提供了花瓶形式设计的案例研究,以证明所提出的方法。我们的结果表明,NSGA-II具有良好的收敛性能和混合性能。相反,SPEA2提供了设计人员所需的强大多样性。拟议的HKES适用于各种产品设计问题,同时通过探索众多Pareto最佳解决方案来提供创意设计思想。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号