首页> 外文期刊>Advanced engineering informatics >Transfer learning for long-interval consecutive missing values imputation without external features in air pollution time series
【24h】

Transfer learning for long-interval consecutive missing values imputation without external features in air pollution time series

机译:在空气污染时间序列中的外部特征转移学习长期连续缺失值估算

获取原文
获取原文并翻译 | 示例

摘要

Air pollution has become one of the world's largest health and environmental problems. Studies focusing on air quality prediction, influential factors analysis, and control policy evaluation are increasing. When conducting these studies, valid and high-quality air pollution data are necessarily required to generate reasonable results. Missing data, which is frequently contained in the collected raw data, therefore, has become a significant barrier. Existing methods on missing data either cannot effectively capture the temporal and spatial mechanism of air pollution or focus on sequences with low missing rates and random missing positions. To address this problem, this paper proposes a new imputation methodology, namely transferred long short-term memory-based iterative estimation (TLSTM-IE) to impute consecutive missing values with large missing rates. A case study is conducted in New York City to verify the effectiveness and priority of the proposed methodology. Long-interval consecutive missing PM2.5 concentration data are filled. Experimental results show that the proposed model can effectively leam from long-term dependencies and transfer the learned knowledge. The imputation accuracy of the TLSTM-IE model is 25-50% higher than other commonly seen methods. The novelty of this study lies in two aspects. First is that we target at long-interval consecutive missing data, which has not been addressed before by existing studies in atmospheric research. Second is the novel application of transfer learning on missing values imputation. To our best knowledge, no research on air quality has implemented this technique on this problem before.
机译:空气污染已成为世界上最大的健康和环境问题之一。专注于空气质量预测,影响因素分析和控制政策评估的研究正在增加。在进行这些研究时,必然需要有效和高质量的空气污染数据来产生合理的结果。因此,缺少数据,它们经常包含在收集的原始数据中,因此已成为一个重要的障碍。缺失数据的现有方法无法有效地捕获空气污染的时间和空间机制或专注于具有低缺失率和随机缺失位置的序列。为了解决这个问题,本文提出了一种新的撤销方法,即转移了基于短期内存的迭代估计(TLSTM-IE),以赋予具有大缺失率的连续缺失值。在纽约市进行案例研究,以验证提出的方法的有效性和优先级。长期连续缺少PM2.5浓度数据填充。实验结果表明,该拟议模型可以有效地从长期依赖关系中联系并转移学习知识。 TLSTM-IE模型的归纳精度比其他常见方法高25-50%。这项研究的新颖性在于两个方面。首先是我们以长期间隔的缺失数据为目标,在大气研究中存在之前尚未解决。其次是对缺失值归因的转移学习的新应用。为了我们的最佳知识,没有关于空气质量的研究在此之前已经在这个问题上实施了这种技术。

著录项

  • 来源
    《Advanced engineering informatics》 |2020年第4期|101092.1-101092.12|共12页
  • 作者单位

    Department of Civil and Environmental Engineering The Hong Kong University of Science and Technology Hong Kong China;

    Department of Civil and Environmental Engineering The Hong Kong University of Science and Technology Hong Kong China;

    Department of Research and Development Big Bay Innovation Research and Development Limited Hong Kong China;

    Department of Civil and Environmental Engineering The Hong Kong University of Science and Technology Hong Kong China;

    Department of Architecture and Civil Engineering City University of Hong Kong Hong Kong China;

    Department of Civil and Environmental Engineering The Hong Kong University of Science and Technology Hong Kong China;

    Shenzhen Qianhai Bruco Consulting Company Limited Shenzhen China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Air quality; Deep learning; Long-interval consecutive missing values; Long short-term memory (LSTM); Neural network; Transfer learning;

    机译:空气质量;深度学习;长间隔连续缺失值;短期内记忆(LSTM);神经网络;转移学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号