首页> 外文期刊>Concurrency and computation: practice and experience >An unsupervised neural network approach for imputation of missing values in univariate time series data
【24h】

An unsupervised neural network approach for imputation of missing values in univariate time series data

机译:一个无监督的神经网络方法,用于单变量时间序列数据中缺失值的归咎

获取原文
获取原文并翻译 | 示例

摘要

Handling missing values in time series data plays a key role in predicting and forecasting, as complete and clean historical data help to achieve higher accuracy. Numerous research works are present in multivariate time series imputation, but imputation in univariate time series data is least considered due to correlated variables unavailability. This article aims to propose an iterative imputation algorithm by clustering univariate time series data, considering the trend, seasonality, cyclical, and residue features of the data. The proposed method uses a similarity based nearest neighbor imputation approach on each clusters for filling missing values. The proposed method is evaluated on publicly available data set from the data market repository and UCI repository by randomly simulating missing patterns under low, moderate, and high missingness rates throughout the data series. The proposed method's outcome is evaluated with the imputeTestbench package with root mean squared error as an error metric and validated through prediction accuracy and concordance correlation coefficient statistical test. Experimental results show that the proposed imputation technique produces closer values to the original time series data set, resulting in low error rates compared with other existing imputation methods.
机译:在时间序列数据中处理缺失值在预测和预测中起着关键作用,如完整和清洁的历史数据有助于实现更高的准确性。多变量时间序列估算存在许多研究工作,但由于相关变量不可用,单变量时间序列数据中的归纳是最不考虑的。本文旨在通过聚类单变量时间序列数据,考虑数据的趋势,季节性,周期性和残留功能来提出迭代估算算法。所提出的方法在每个群集中使用基于最近的邻遮挡方法以填充缺失值。通过在整个数据系列的低,中等和高缺失率下随机模拟缺失模式,对从数据市场存储库和UCI存储库中的公共可用数据进行评估。所提出的方法的结果是用具有根均方误差的虚线封装作为误差度误差和通过预测准确度和一致性相关系数统计测试进行验证。实验结果表明,该撤销技术对原始时间序列数据集产生了更接近的值,与其他现有载体方法相比,误差率低。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号