机译:采用先进机器学习技术实时检测电力线植被故障引起的野火风险
Department of Civil and Environmental Engineering The Hong Kong University of Science and Technology Hong Kong China;
Department of Civil and Environmental Engineering The Hong Kong University of Science and Technology Hong Kong China;
Department of Architecture and Civil Engineering City University of Hong Kong Hong Kong China;
Department of Civil and Environmental Engineering The Hong Kong University of Science and Technology Hong Kong China;
Department of Civil and Environmental Engineering The Hong Kong University of Science and Technology Hong Kong China;
Shenzhen Qianhai Bruco Consulting Company Limited Shenzhen China;
Wildfire; Ignition process; Machine learning; Powerline vegetation faults; XGBoost;
机译:通过基于机器学习的异常检测技术实时识别供水系统的网络物理攻击
机译:使用图像处理和机器学习技术实时检测驾驶员的身姿并警告驾驶员
机译:利用机器学习技术改进海水淡化系统中的故障检测
机译:基于遥感的野火检测和干预监测Szendroe型综合植被火灾管理-匈牙利的野火管理计划
机译:利用在线公共数据的风险检测和预测:机器学习技术在供应链风险管理中的应用
机译:BRCA1 / 2消极检测风险估计算法的新方法采用造型监督机学习技术
机译:使用机器学习技术的基于机器的网络物理系统中的智能故障检测数据集减少框架