首页> 外文期刊>Advanced engineering informatics >Development of an IoT-based big data platform for day-ahead prediction of building heating and cooling demands
【24h】

Development of an IoT-based big data platform for day-ahead prediction of building heating and cooling demands

机译:开发基于物联网的大数据平台,用于建筑加热和冷却需求的前瞻性预测

获取原文
获取原文并翻译 | 示例

摘要

The emerging technologies of the Internet of Things (IoT) and big data can be utilised to derive knowledge and support applications for energy-efficient buildings. Effective prediction of heating and cooling demands is fundamental in building energy management. In this study, a 4-layer IoT-based big data platform is developed for day-ahead prediction of building energy demands, while the core part is the hybrid machine learning-based predictive model. The proposed energy demand predictive model is based on the hybrids of k-means clustering and artificial neural network (ANN). Due to different temperatures of walls, windows, grounds, roofs and indoor air, various IoT sensors are installed at different locations of the building. To determine the input variables to the hybrid machine learning-based predictive model, correlation analysis is adopted. Through clustering analysis, the characteristic patterns of daily weather profile are identified. Thus, the annual profile is classified into several featuring groups. Each group of weather profile, along with IoT sensor readings, building operating schedules as well as heating and cooling demands, is used to train the sub-ANN predictive models. Due to the involvement of IoT sensors, the overall prediction accuracy can be improved. It is found that the mean absolute percentage error of energy demands prediction is 3% and 8% in training and testing cases, respectively.
机译:物联网(物联网)和大数据的新兴技术可用于导出节能建筑的知识和支持应用。有效预测加热和冷却需求是建筑能源管理的基础。在本研究中,开发了一种基于某种基于物联网的大数据平台,用于建筑能量需求的日常预测,而核心部分是基于混合机学习的预测模型。所提出的能量需求预测模型基于K-Means聚类和人工神经网络(ANN)的杂种。由于墙壁,窗户,地面,屋顶和室内空气的不同,各种IOT传感器安装在建筑物的不同位置。为了确定基于混合机学习的预测模型的输入变量,采用相关分析。通过聚类分析,确定日常天气曲线的特征模式。因此,年度简介被分类为若干小组。每组天气配置文件以及物联网传感器读数,建筑运行计划以及加热和冷却需求,用于培训子ANN预测模型。由于IOT传感器的参与,可以提高整体预测精度。结果发现,在训练和测试案件中,能量需求预测的平均绝对百分比误差分别为3%和8%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号