首页> 外文期刊>Advanced engineering informatics >Saliency detection analysis of collective physiological responses of pedestrians to evaluate neighborhood built environments
【24h】

Saliency detection analysis of collective physiological responses of pedestrians to evaluate neighborhood built environments

机译:行人集体生理反应的显着性检测分析,以评估邻里建筑环境

获取原文
获取原文并翻译 | 示例

摘要

Crowdsourcing pedestrians' physiological responses (e.g., electrodermal activity (EDA), gait patterns, and blood volume pulse) offers a unique opportunity for assessing and maintaining built environments in a neighborhood. However, raw physiological signals acquired from naturalistic ambulatory settings cannot effectively capture prominent local patterns in the data stream, since diverse technical challenges (e.g., electrode contact noise and motion artifacts) and confounding factors (e.g., heightened physiology due to the movement) make it difficult to detect significant fine-grain signal fluctuations. Motivated by this issue, this paper proposes a method to identify physical disorders that cause pedestrians physical discomfort and/or emotional distress, by using saliency detection analysis on physiological responses. A bottom-up segmentation approach was used as an unsupervised way to divide each physiological signal into homogeneous segments. A physiological saliency cue (PSC) is proposed to calculate the distinctiveness of physiological responses over each segment in contrast to the remaining segments, and the collective PSC of a physical point of interest is computed across participants. The results, obtained from physiological signals collected from wearable devices, indicate that the suggested saliency detection analysis is effectual in capturing prominent local patterns. Our statistical analysis further indicates that the proposed PSC features can be indicative of physical disorders. The outcome of this research will provide a foundation towards using physiological signals to evaluate built environments, and towards promoting neighborhood walkability, increasing feelings of safety in the urban space, and augmenting residents' well-being.
机译:众包行人的生理反应(例如,皮肤电活动(EDA),步态模式和血容量脉搏)为评估和维护附近的建筑环境提供了独特的机会。但是,由于各种技术挑战(例如,电极接触噪声和运动伪影)和混杂因素(例如,由于运动引起的生理增高)使得从自然流动的环境中获取的原始生理信号无法有效捕获数据流中的突出局部模式。很难检测到明显的细粒度信号波动。受此问题的影响,本文提出了一种通过对生理反应进行显着性检测分析来识别导致行人身体不适和/或情绪困扰的身体疾病的方法。自下而上的分割方法被用作一种无监督的方式,将每个生理信号分为均匀的片段。提出了一种生理显着性提示(PSC),以计算与其余部分相反的每个部分的生理响应的独特性,并在参与者之间计算感兴趣的物理点的集体PSC。从可穿戴设备收集的生理信号获得的结果表明,建议的显着性检测分析在捕获突出的局部模式方面是有效的。我们的统计分析进一步表明,建议的PSC功能可以指示身体不适。这项研究的结果将为使用生理信号评估建筑环境,促进邻里步行,增加城市空间的安全感以及增强居民的幸福感提供基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号