首页> 外文期刊>Advanced engineering informatics >A large-scale evaluation of automated metadata inference approaches on sensors from air handling units
【24h】

A large-scale evaluation of automated metadata inference approaches on sensors from air handling units

机译:对来自空气处理单元的传感器的自动元数据推断方法的大规模评估

获取原文
获取原文并翻译 | 示例

摘要

Building automation systems provide abundant sensor data to enable the potential of using data analytics to, among other things, improve the energy efficiency of the building. However, deployment of these applications for buildings, such as, fault detection and diagnosis (FDD) on multiple buildings remains a challenge due to the non-trivial efforts of organizing, managing and extracting metadata associated with sensors (e.g., information about their location, function, etc.), which is required by applications. One of the reasons leading to the problem is that varying conventions, acronyms, and standards are used to define this metadata. To better understand the nature of the problem, as well as the performance and scalability of existing solutions, we implement and test 6 different time-series based metadata inference approaches on sensors from 614 air handling units (AHU) instrumented in 35 building sites accounting for more than 400 buildings distributed across United States of America. We infer 12 types of sensors and actuators in AHUs required by a rule-based FDD application: AHU performance and assessment rules (APAR). Our results show that: (1) the average performance of these approaches in terms of accuracy is similar across building sites, though there is significant variance; (2) the expected accuracy of classifying the type of points required by APAR for a new unseen building is, on average, 75%; (3) the performance of the model does not decrease as long as training data and testing data are extracted from adjacent months.
机译:楼宇自动化系统提供了丰富的传感器数据,从而有可能利用数据分析来提高楼宇的能源效率。但是,由于组织,管理和提取与传感器相关的元数据(例如,有关其位置的信息,功能等),这是应用程序所需的。导致该问题的原因之一是使用了不同的约定,首字母缩写词和标准来定义此元数据。为了更好地了解问题的本质以及现有解决方案的性能和可扩展性,我们在来自35个建筑工地的614个空气处理单元(AHU)的传感器上实施并测试了6种基于时间序列的不同元数据推断方法分布在美国的400多个建筑物。我们推断出基于规则的FDD应用程序要求的AHU中的12种传感器和执行器:AHU性能和评估规则(APAR)。我们的结果表明:(1)尽管存在显着差异,但这些方法的平均性能在整个建筑工地上均相似。 (2)对APAR要求对新的看不见的建筑物进行分类的分类的预期准确性平均为75%; (3)只要从相邻月份中提取训练数据和测试数据,模型的性能就不会降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号