首页> 外文期刊>Advanced engineering informatics >Real-time validation of vision-based over-height vehicle detection system
【24h】

Real-time validation of vision-based over-height vehicle detection system

机译:基于视觉的超重车辆检测系统的实时验证

获取原文
获取原文并翻译 | 示例

摘要

Over-height vehicle strikes with low bridges and tunnels are an ongoing problem worldwide. While previous methods have used vision-based systems to address the over-height warning problem, such methods are sensitive to wind. In this paper, we perform a full validation of the system using a constraint-based approach to minimize the number of over-height vehicle misclassifications due to windy conditions. The dataset includes a total of 102 over-height vehicles recorded at frame rates of 25 and 30fps. An analysis is performed of wind and vehicle displacements to track over-height features using optical flow paired with SURF feature detectors. Motion captured within the region of interest was treated as a standard two-class binary linear classification problem with 1 indicating over-height vehicle presence and 0 indicating noise. The algorithm performed with 100% recall, 83.3% precision, false positive rate of 0.2% and warning accuracy of 96.6%.
机译:全球范围内,桥梁和隧道低的超高车辆撞击是一个持续存在的问题。尽管先前的方法已使用基于视觉的系统来解决超高警告问题,但此类方法对风敏感。在本文中,我们使用基于约束的方法对系统进行了全面验证,以最大程度地减少由于有风情况导致的超高车辆误分类的数量。该数据集包括总共102架以25和30fps的帧率记录的超高车辆。使用与SURF特征检测器配对的光流对风和车辆位移进行分析,以跟踪超高特征。在感兴趣区域内捕获的运动被视为标准的两类二进制线性分类问题,其中1表示车辆超高,而0表示噪声。该算法具有100%的召回率,83.3%的准确度,0.2%的误报率和96.6%的警告准确率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号