首页> 外文期刊>Ad-hoc & sensor wireless networks >Approximate Convex Decomposition Based on Connectivity in Large-scale 3D Wireless Sensor Networks
【24h】

Approximate Convex Decomposition Based on Connectivity in Large-scale 3D Wireless Sensor Networks

机译:大规模3D无线传感器网络中基于连通性的近似凸分解

获取原文
获取原文并翻译 | 示例

摘要

Convex decomposition with concave boundaries is to partition network into a set of simpler components with no concave surface merely, which has great significance for routing, localization, coverage and data acquisition. With the development of a WSN application, researches on 3D convex segmentation will gain much attention and study. However, currently, it is a new research field, which has not yet been studied much. Toward that end, this paper proposes an Approximate Convex Decomposition based on Connectivity (ACDC) only to 3D WSNs with uniform random distribution deployment. We identify the concave nodes that have meet the need of concavity and the characteristics that differentiate saddle nodes from boundary nodes. Beginning with the concave nodes that lead to holes and concave valleys, we partition the irregular sensor network into nicely shaped pieces. Compared with previous work, our proposed algorithm actually realizes the essential convex decomposition for complex 3D WSNs with holes and does not require knowledge of sensor locations, using, instead, only network connectivity information; furthermore, finding a balance of network concavity and number of sub-networks leads to an near optimal topology of the 3D field, meeting all our requirements. Because ACDC focuses on the topology of the 3D field, an near optimal result that meets our requirements is provided by balancing network concavity with the number of sub-networks. Results form extensive simulations show that ACDC works well in the presence of holes and shape variations, always yielding appropriate segmentation results.
机译:具有凹边界的凸分解是将网络仅划分为一组没有凹表面的简单组件,这对路由,定位,覆盖和数据采集具有重要意义。随着WSN应用程序的发展,对3D凸分割的研究将引起广泛的关注和研究。但是,目前,这是一个新的研究领域,尚未进行太多研究。为此,本文提出了一种基于连通性(ACDC)的近似凸分解,仅适用于具有均匀随机分布部署的3D WSN。我们确定了满足凹度需要的凹形节点以及区分鞍形节点和边界节点的特征。从导致孔和凹谷的凹节点开始,我们将不规则的传感器网络划分为形状良好的片段。与以前的工作相比,我们提出的算法实际上实现了带有孔的复杂3D WSN的基本凸分解,并且不需要知道传感器的位置,而仅使用网络连接信息。此外,找到网络凹度和子网数量之间的平衡会导致3D领域的拓扑接近最佳,从而满足我们的所有要求。由于ACDC专注于3D领域的拓扑,因此通过在网络凹度和子网数量之间取得平衡,可以提供接近我们要求的最佳结果。大量模拟结果表明,ACDC在存在孔和形状变化的情况下效果很好,始终能产生适当的分割结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号