首页> 外文期刊>ACM transactions on the web >Attributed Collaboration Network Embedding for Academic Relationship Mining
【24h】

Attributed Collaboration Network Embedding for Academic Relationship Mining

机译:归属合作网络嵌入学术关系挖掘

获取原文
获取原文并翻译 | 示例

摘要

Finding both efficient and effective quantitative representations for scholars in scientific digital libraries has been a focal point of research. The unprecedented amounts of scholarly datasets, combined with contemporary machine learning and big data techniques, have enabled intelligent and automatic profiling of scholars from this vast and ever-increasing pool of scholarly data. Meanwhile, recent advance in network embedding techniques enables us to mitigate the challenges of large scale and sparsity of academic collaboration networks. In real-world academic social networks, scholars are accompanied with various attributes or features, such as co-authorship and publication records, which result in attributed collaboration networks. It has been observed that both network topology and scholar attributes are important in academic relationship mining. However, previous studies mainly focus on network topology, whereas scholar attributes are overlooked. Moreover, the influence of different scholar attributes are unclear. To bridge this gap, in this work, we present a novel framework of Attributed Collaboration Network Embedding (ACNE) for academic relationship mining. ACNE extracts four types of scholar attributes based on the proposed scholar profiling model, including demographics, research, influence, and sociability. ACNE can learn a low-dimensional representation of scholars considering both scholar attributes and network topology simultaneously. We demonstrate the effectiveness and potentials of ACNE in academic relationship mining by performing collaborator recommendation on two real-world datasets and the contribution and importance of each scholar attribute on scientific collaborator recommendation is investigated. Our work may shed light on academic relationship mining by taking advantage of attributed collaboration network embedding.
机译:寻找科学数字图书馆学者的有效和有效的量化表现一直是研究的焦点。与当代机器学习和大数据技术相结合的前所未有的学术数据集,从而实现了来自这一广大和越来越多的学术数据库的学者智能和自动分析。同时,网络嵌入技术最近的进步使我们能够减轻学术协作网络的大规模和稀疏性的挑战。在现实世界的学术社交网络中,学者伴随着各种属性或功能,例如共同作者和出版物记录,从而导致归属协作网络。已经观察到,网络拓扑和学者属性都在学术关系挖掘中很重要。然而,以前的研究主要关注网络拓扑,而学者属性被忽视。此外,不同学者属性的影响尚不清楚。为了在这项工作中弥合这一差距,我们展示了一部新颖的合作网络嵌入式(痤疮)的框架,用于学术关系挖掘。痤疮基于拟议的学者分析模型提取四种学者属性,包括人口统计学,研究,影响力和社交性。痤疮可以同时考虑学者属性和网络拓扑的学者的低维表示。我们通过在两个现实世界数据集上表演合作伙伴推荐,展示痤疮在学术关系挖掘中的有效性和潜力,并调查了每个学者属性对科学合作者建议的贡献和重要性。我们的工作可以通过利用归属协作网络嵌入来阐明学术关系挖掘。

著录项

  • 来源
    《ACM transactions on the web》 |2021年第1期|4.1-4.20|共20页
  • 作者单位

    Dalian Univ Technol Sch Software Dalian 116620 Peoples R China|Univ Macau Dept Comp & Informat Sci Taipa Macau Peoples R China;

    Dalian Univ Technol Sch Software Dalian 116620 Peoples R China;

    Dalian Univ Technol Sch Software Dalian 116620 Peoples R China;

    Mahidol Univ Fac Informat & Commun Technol Salaya 73170 Nakhon Pathom Thailand;

    Dalian Univ Technol Sch Software Dalian 116620 Peoples R China|Federat Univ Australia Sch Engn IT & Phys Sci Ballarat Vic 3353 Australia;

    Univ Macau Dept Comp & Informat Sci Taipa Macau Peoples R China|Univ Macau State Key Lab Internet Things Smart City Taipa Macau Peoples R China;

    Chinese Univ Hong Kong Dept Comp Sci & Engn Shatin Hong Kong Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Network embedding; academic information retrieval; scientific collaboration; graph learning;

    机译:网络嵌入;学术信息检索;科学合作;图学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号