首页> 外文期刊>ACM transactions on the web >Emotions Behind Drive-by Download Propagation on Twitter
【24h】

Emotions Behind Drive-by Download Propagation on Twitter

机译:在推特上的驱动器后面的情感

获取原文
获取原文并翻译 | 示例

摘要

Twitter has emerged as one of the most popular platforms to get updates on entertainment and current events. However, due to its 280-character restriction and automatic shortening of URLs, it is continuously targeted by cybercriminals to carry out drive-by download attacks, where a user's system is infected by merely visiting a Web page. Popular events that attract a large number of users are used by cybercriminals to infect and propagate malware by using popular hashtags and creating misleading tweets to lure users to malicious Web pages. A drive-by download attack is carried out by obfuscating a malicious URL in an enticing tweet and used as clickbait to lure users to a malicious Web page. In this article, we answer the following two questions: Why are certain malicious tweets retweeted more than others? Do emotions reflecting in a tweet drive virality? We gathered tweets from seven different sporting events over 3 years and identified those tweets that were used to carry to out a drive-by download attack. From the malicious (N = 105, 642) and benign (N = 169, 178) data sample identified, we built models to predict information flow size and survival. We define size as the number of retweets of an original tweet, and survival as the duration of the original tweet's presence in the study window. We selected the zero-truncated negative binomial (ZTNB) regression method for our analysis based on the distribution exhibited by our dependent size measure and the comparison of results with other predictive models. We used the Cox regression technique to model the survival of information flows as it estimates proportional hazard rates for independent measures. Our results show that both social and content factors are statistically significant for the size and survival of information flows for both malicious and benign tweets. In the benign data sample, positive emotions and positive sentiment reflected in the tweet significantly predict size and survival. In contrast, for the malicious data sample, negative emotions, especially fear, are associated with both size and survival of information flows.
机译:Twitter已成为最受欢迎的平台之一,以获得娱乐和当前事件的更新。但是,由于其URL的280个字符的限制和自动缩短,它是由网络犯罪分子连续定位的,以便通过仅访问网页感染用户系统的驱动下载攻击。通过使用流行的HASHTAGS来感染和传播恶意软件并创建误导性推文来吸引用户以引诱用户欺骗用户到恶意网页的流行活动。通过在诱人的推文中混淆恶意URL并用作ClickBait来诱导用户来进行驱动下载攻击,以诱导用户到恶意网页。在本文中,我们回答了以下两个问题:为什么某些恶意推文转发比其他问题更多?情绪在推特驱动的病毒中反映吗?我们在3年内收集了来自七种不同体育赛事的推文,并确定了那些用于通过下载攻击进行驱动的推文。从恶意(n = 105,642)和良性(n = 169,178)识别的数据样本,我们构建了模型以预测信息流量尺寸和生存。我们将尺寸定义为原始推文的转发次数,以及原始推文在学习窗口中存在的持续时间的生存。我们选择了零截断的负二项式(ZTNB)回归方法,了解我们的依赖大小措施的分布和与其他预测模型的结果的比较。我们利用Cox回归技术来模拟信息流的生存,因为它估计对独立措施的比例危险率。我们的研究结果表明,社会和内容因素既对于恶意和良性推文的信息流量的大小和生存是统计学意义。在良性数据样本中,在推文中反映的积极情绪和积极情绪显着预测规模和生存。相比之下,对于恶意数据样本,负面情绪,尤其是恐惧,与信息流的尺寸和生存相关联。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号