首页> 外文期刊>ACM transactions on the web >Automatic Tag Recommendation Algorithms for Social Recommender Systems
【24h】

Automatic Tag Recommendation Algorithms for Social Recommender Systems

机译:社交推荐系统的自动标签推荐算法

获取原文
获取原文并翻译 | 示例

摘要

The emergence of Web 2.0 and the consequent success of social network Web sites such as Del.icio.us and Flickr introduce us to a new concept called social bookmarking, or tagging. Tagging is the action of connecting a relevant user-defined keyword to a document, image, or video, which helps the user to better organize and share their collections of interesting stuff. With the rapid growth of Web 2.0, tagged data is becoming more and more abundant on the social network Web sites. An interesting problem is how to automate the process of making tag recommendations to users when a new resource becomes available. In this article, we address the issue of tag recommendation from a machine learning perspective. From our empirical observation of two large-scale datasets, we first argue that the user-centered approach for tag recommendation is not very effective in practice. Consequently, we propose two novel document-centered approaches that are capable of making effective and efficient tag recommendations in real scenarios. The first, graph-based, method represents the tagged data in two bipartite graphs, (document, tag) and (document, word), then finds document topics by leveraging graph partitioning algorithms. The second, prototype-based, method aims at finding the most representative documents within the data collections and advocates a sparse multiclass Gaussian process classifier for efficient document classification. For both methods, tags are ranked within each topic cluster/class by a novel ranking method. Recommendations are performed by first classifying a new document into one or more topic clusters/classes, and then selecting the most relevant tags from those clusters/classes as machine-recommended tags. Experiments on real-world data from Del.icio.us, CiteULike, and BibSonomy examine the quality of tag recommendation as well as the efficiency of our recommendation algorithms. The results suggest that our document-centered models can substantially improve the performance of tag recommendations when compared to the user-centered methods, as well as topic models LDA and SVM classifiers.
机译:Web 2.0的出现以及诸如Del.icio.us和Flickr之类的社交网络网站的成功为我们介绍了一个称为社交书签或标记的新概念。标记是将相关的用户定义的关键字连接到文档,图像或视频的操作,它可以帮助用户更好地组织和共享他们感兴趣的东西的集合。随着Web 2.0的迅速发展,在社交网站上标记的数据变得越来越丰富。一个有趣的问题是,当有新资源可用时,如何自动化向用户提出标签建议的过程。在本文中,我们从机器学习的角度解决标签推荐的问题。从对两个大型数据集的实证观察中,我们首先认为,以用户为中心的标签推荐方法在实践中不是很有效。因此,我们提出了两种新颖的以文档为中心的方法,它们能够在实际场景中提出有效而高效的标签建议。第一种基于图的方法将标记的数据表示为两个二部图(文档,标签)和(文档,单词),然后利用图分区算法查找文档主题。第二种基于原型的方法旨在在数据集合中找到最具代表性的文档,并倡导稀疏的多类高斯过程分类器以实现有效的文档分类。对于这两种方法,都通过一种新颖的排名方法对标签在每个主题组/类中进行排名。通过首先将一个新文档分类到一个或多个主题组/类中,然后从那些组/类中选择最相关的标签作为机器推荐标签来执行建议。来自Del.icio.us,CiteULike和BibSonomy的真实世界数据实验检验了标签推荐的质量以及我们推荐算法的效率。结果表明,与以用户为中心的方法以及主题模型LDA和SVM分类器相比,我们以文档为中心的模型可以显着提高标签推荐的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号