首页> 外文期刊>ACM transactions on the web >A vlHMM Approach to Context-Aware Search
【24h】

A vlHMM Approach to Context-Aware Search

机译:一种用于上下文感知搜索的vlHMM方法

获取原文
获取原文并翻译 | 示例

摘要

Capturing the context of a user's query from the previous queries and clicks in the same session leads to a better understanding of the user's information need. A context-aware approach to document reranking, URL recommendation, and query suggestion may substantially improve users' search experience. In this article, we propose a general approach to context-aware search by learning a variable length hidden Markov model (vlHMM) from search sessions extracted from log data. While the mathematical model is powerful, the huge amounts of log data present great challenges. We develop several distributed learning techniques to learn a very large vlHMM under the map-reduce framework. Moreover, we construct feature vectors for each state of the vlHMM model to handle users' novel queries not covered by the training data. We test our approach on a raw dataset consisting of 1.9 billion queries, 2.9 billion clicks, and 1.2 billion search sessions before filtering, and evaluate the effectiveness of the vlHMM learned from the real data on three search applications: document reranking, query suggestion, and URL recommendation. The experiment results validate the effectiveness of vlHMM in the applications of document reranking, URL recommendation, and query suggestion.
机译:从同一会话中的先前查询和单击中捕获用户查询的上下文可以更好地了解用户的信息需求。用于文档重新排名,URL推荐和查询建议的上下文感知方法可以大大改善用户的搜索体验。在本文中,我们通过从日志数据提取的搜索会话中学习可变长度隐藏马尔可夫模型(vlHMM),提出了一种上下文感知搜索的通用方法。虽然数学模型很强大,但是大量的日志数据提出了巨大的挑战。我们开发了几种分布式学习技术,以在map-reduce框架下学习非常大的vlHMM。此外,我们为vlHMM模型的每个状态构造特征向量,以处理训练数据未涵盖的用户新颖查询。我们在包含19亿次查询,29亿次点击和12亿次搜索会话的原始数据集上进行过滤之前测试了我们的方法,并评估了从以下三个搜索应用程序的真实数据中学到的vlHMM的有效性:文档排名,查询建议和网址推荐。实验结果验证了vlHMM在文档排名,URL推荐和查询建议中的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号