首页> 外文期刊>ACM Transactions on Spatial Algorithms and Systems >Coupled IGMM-GANs with Applications to Anomaly Detection in Human Mobility Data
【24h】

Coupled IGMM-GANs with Applications to Anomaly Detection in Human Mobility Data

机译:耦合IGMM-GANS在人类移动数据中的应用到异常检测

获取原文
获取原文并翻译 | 示例

摘要

Detecting anomalous activity in human mobility data has a number of applications, including road hazard sensing, telematics-based insurance, and fraud detection in taxi services and ride sharing. In this article, we address two challenges that arise in the study of anomalous human trajectories: (1) a lack of ground truth data on what defines an anomaly and (2) the dependence of existing methods on significant pre-processing and feature engineering. Although generative adversarial networks (GANs) seem like a natural fit for addressing these challenges, we find that existing GAN-based anomaly detection algorithms perform poorly due to their inability to handle multimodal patterns. For this purpose, we introduce an infinite Gaussian mixture model coupled with (bidirectional) GANs-IGMM-GAN-that is able to generate synthetic, yet realistic, human mobility data and simultaneously facilitates multimodal anomaly detection. Through the estimation of a generative probability density on the space of human trajectories, we axe able to generate realistic synthetic datasets that can be used to benchmark existing anomaly detection methods. The estimated multimodal density also allows for a natural definition of outlier that we use for detecting anomalous trajectories. We illustrate our methodology and its improvement over existing GAN anomaly detection on several human mobility datasets, along with MNIST.
机译:检测人类流动性数据中的异常活动具有许多应用,包括道路危险感应,基于远程信息处理的保险和出租车服务的欺诈检测和乘坐分享。在本文中,我们解决了在研究异常人体轨迹研究中出现的两个挑战:(1)缺乏关于什么定义异常的实际数据和(2)现有方法对重要预处理和特征工程的依赖性。虽然生成的对抗性网络(GANs)似乎是一种自然的适合解决这些挑战,但我们发现现有的GaN的异常检测算法由于无法处理多数制模式而表现不佳。为此目的,我们介绍了一种与(双向)GAN-IGMM-GaN耦合的无限高斯混合模型 - 能够产生合成,现实,人类流动性数据,并同时促进多峰异常检测。通过估计人类轨迹空间的生成概率密度,我们斧头能够产生现实的合成数据集,可用于基准现有的异常检测方法。估计的多模式密度还允许我们用于检测异常轨迹的异常的自然定义。我们说明了对几个人类移动数据集的现有GaN异常检测的方法及其改进,以及Mnist。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号