首页> 外文期刊>ACM Transactions on Spatial Algorithms and Systems >Accurate Detection of Road Network Anomaly by Understanding Crowd's Driving Strategies from Human Mobility
【24h】

Accurate Detection of Road Network Anomaly by Understanding Crowd's Driving Strategies from Human Mobility

机译:通过从人员流动中了解人群的驾驶策略来准确检测道路网络异常

获取原文
获取原文并翻译 | 示例

摘要

There are thousands of road closures and changed traffic rules that impact vehicle routing every day. Detecting the road closures and traffic rule changes is essential for dynamic route planning and navigation serving. In this article, we propose a driving-behavior modeling-based method for accurately and effectively detecting the road anomalies. In the first step, we detect the areas of anomalies by using the deviation between drivers' actual and expected behaviors. To discover the cause of anomalies, we explore the drivers' short-term destination and find the crucial link pairs in anomalous areas through a novel optimized link entanglement search algorithm, namely, the Select Link Entanglements (SELES) algorithm. Finally, we analyze the crowd's driving patterns to explain the road network anomalies further. Experiments on a very large GPS dataset demonstrate that the proposed approach outperforms the existing methods in terms of both accuracy and effectiveness.
机译:每天都有成千上万的封路和改变的交通规则影响着车辆的路线。检测道路封闭和交通规则变化对于动态路线规划和导航服务至关重要。在本文中,我们提出了一种基于驾驶行为建模的方法,可以准确有效地检测道路异常。第一步,我们通过使用驾驶员实际行为与预期行为之间的偏差来检测异常区域。为了发现异常原因,我们探索了驾驶员的短期目的地,并通过一种新颖的优化链接纠缠搜索算法(即选择链接纠缠(SELES)算法)在异常区域中找到了关键的链接对。最后,我们分析了人群的驾驶模式,以进一步解释道路网络异常。在非常大的GPS数据集上进行的实验表明,该方法在准确性和有效性方面均优于现有方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号