首页> 外文期刊>ACM Transactions on Spatial Algorithms and Systems >Incorporating LSTM Auto-Encoders in Optimizations to Solve Parking Officer Patrolling Problem
【24h】

Incorporating LSTM Auto-Encoders in Optimizations to Solve Parking Officer Patrolling Problem

机译:在优化中加入LSTM自动编码器,解决停车场巡逻问题

获取原文
获取原文并翻译 | 示例

摘要

The smart parking system is one of the most important problems in smart cities. Recently, an increasing number of sensors installed in parking spaces have provided big spatio-temporal data that be used to analyze parking situations in the city and help parking officers monitor parking violations. The traveling officer problem was customized to formulate a path-finding problem that aims to maximize the probability of catching overstayed cars before they leave. One of the challenges is to extract effective features from the big spatio-temporal data and provide a data-driven solution to replace conventional solutions such as a simple rule-based system or single optimization methods. In this article, we propose a seamless end-to-end learning and optimization framework that combines the long short-term memory auto-encoder neural network, clustering, and path-finding methods to solve the traveling officer problem. Our extensive comparison experiments on a large-scale real-world dataset have shown that our proposed solution outperforms any other single-step or optimization methods.
机译:智能停车系统是智能城市中最重要的问题之一。最近,在停车位安装的越来越多的传感器提供了大量的时空数据,用于分析城市的停车位,并帮助停车人员监控停车违规行为。旅行官员的问题被定制,以制定一个路径发现问题,旨在在他们离开之前最大限度地捕捉过逾越轿车的可能性。其中一个挑战是从大型时空数据中提取有效特征,并提供数据驱动的解决方案以替换传统的解决方案,例如基于简单的规则的系统或单一优化方法。在本文中,我们提出了一种无缝的端到端学习和优化框架,它结合了长期内存自动编码器神经网络,聚类和路径查找方法来解决旅行官问题。我们对大型现实世界数据集的广泛比较实验表明,我们所提出的解决方案优于任何其他单步或优化方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号